a: \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
c: Đặt AB/3=AC/4=BC/5=k
=>AB=3k; AC=4k; BC=5k
Vì \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
a: \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
c: Đặt AB/3=AC/4=BC/5=k
=>AB=3k; AC=4k; BC=5k
Vì \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Chứng minh tam giác ABC là tam giác vuông trong các trường hợp sau:
a) AB = 3x, AC = 4x, BC = 5x (x > 0)
b) AB = 5x, AC = 12x, BC = 13x (x > 0)
c) AB = 40x, AC = 41x, BC = 9x (x > 0)
d) 20AB = 15AC = 12BC
e) 65AB = 156AC = 60BC
Chứng minh tam giác ABC là tam giác vuông trong các trường hợp sau
AB=3.x , AC=4.x , BC=5.x
Chứng minh tam giác ABC là tam giác vuông trong các trường hợp sau:
1) AB=3x,AC=4x,BC=5x (x>0)
2) \(\frac{AB}{3}\)=\(\frac{AC}{4}\)=\(\frac{BC}{5}\)
3) 20AB=15AC=12BC
bài 3;cho tam giác abc vuông tại a biết ab=2cm tính bc
bài 4;cho tam giác abc vuông tại a biết bc=2cm.tính ab,ac
bài 5.cho tam giác abc vuông tại a
a)tính ab biết bc=10cm,ac=8cm.b)tính ac biết bc=12 cm,ab=10cm
Cho tam giác ABC cân tại A. Kẻ AM vuông góc với BC (M thuộc BC)
a) Chứng minh tam giác ABM=tam giác ACM
b) Cho biết AB=AC=13cm, AM= 12cm. Tính độ dài cạnh BC
c) Đường thằng vuông góc với AB tại B cắt đường thẳng vuông góc với AC tại C ở D. Chứng minh tam giác DBC cân
tam giác ABC cân tại A, góc A = 50 độ
a). Tính góc B, góc C
b). Vẽ AH vuông góc với BC (H thuộc BC). Chứng minh tam giác ABH = tam giác ACH
c). Biết AB = 17cm, BC = 16cm, tính AH
d). Vẽ CN vuông góc với AB (N thuộc AB), BM vuông góc với AC (M thuộc AC). Chứng minh NC = MB
Cho tam giác ABC vuông tại A có AB = AC .Lấy điểm I là trung điểm của đoạn thẳng BC . a) Chứng minh Tam giác ABC= TAM GIÁC ACI b) Chứng minh c) Trên tia đối của tia AB lấy điểm E sao cho AE = AB .Hãy chứng minh CB = CE.