Chứng minh \(\sqrt{7}\) là số vô tỉ.
Cho hai số hữu tỉ x và y thỏa mãn x3 - y3 = 2xy
Chứng minh : \(\sqrt{1+xy}\) là số hữu tỉ
Với mỗi số nguyên dương \(n\), đặt \(s_{n} = (2 - \sqrt{3})^n + (2 + \sqrt{3})^n\)
a) Chứng minh rằng: \(s_{n+2} = 4s_{n+1} - s_{n}\)
b) Chứng minh rằng sn là số nguyên với mọi số nguyên dương n và tìm số dư của s2018 khi chia cho 3.
c) Chứng minh rằng \([(2 + \sqrt{3})^n] = s_{n} - 1\) với mọi số nguyên dương \(n\), trong đó kí hiệu [x] là phần nguyên của số thực \(x\).
Cho \(A=\sqrt{5\sqrt{5\sqrt{5...\sqrt{5}}}}\) (2016 số 5) và \(B=\sqrt{20+\sqrt{20+...+\sqrt{20}}}\) (2017 số 20)
Chứng minh rằng: A+B<10
a, tính Max A=\(\sqrt{x-1}+\sqrt{9-x}\)
b,Tìm tất cả các số hữu tỉ x để A=\(\dfrac{3\sqrt{x}+11}{\sqrt{x}+2}\)là số nguyên
Chứng minh : Với mọi số tự nhiên n , ta có : \(\sqrt{n+1}-\sqrt{n}>\dfrac{1}{2\sqrt{n+1}}\)
Cho 3 số thực dương a,b,c thỏa mãn ab+bc+ca=1
Chứng minh rằng: \(\frac{a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\le\frac{3}{2}.\)
(Chứng minh BĐT dựa vào BĐT Cauchy)
Chứng minh rằng với mỗi số nguyên a thì biểu thức sau luôn nhận giá trị là một số nguyên:
D=\(\sqrt{a\left(a+1\right)\left(a+2\right)\left(a+4\right)\left(a+5\right)\left(a+6\right)+36}\)
Chứng minh rằng: (4+\(\sqrt{15}\))(\(\sqrt{10}-\sqrt{6}\))\(\sqrt{4-\sqrt{15}}\)=2