Ta có: abcdeg = 1000abc + deg = 2000deg + deg = 2001deg
Vì 2001 chia hết cho 23 và 29 => 2001deg chia hết cho 23 và 29 => abcdeg chia hết cho 23 và 29
Ta có: abcdeg = 1000abc + deg = 2000deg + deg = 2001deg
Vì 2001 chia hết cho 23 và 29 => 2001deg chia hết cho 23 và 29 => abcdeg chia hết cho 23 và 29
Câu 6: Cho số: \(\overline{abc}\) chia hết cho 37. Chứng minh rằng số \(\overline{bca}\) chia hết cho 37.
Chứng minh rằng abcdeg chia hết cho 23 và 29. Biết rằng abc= 2x deg
a) \(\overline{abc}\) + a + b + c = 142
b) 284 - (a + b + c) = \(\overline{abc}\)
c) \(\overline{abc}\) : 5 dư 2; \(\overline{bac}\) chia hết cho 9 và \(\overline{abc}\) - \(\overline{cba}\) = 297
Xét số \(\overline{abc}\) = ab + bc + ca + ac + cb + ba (Có dấu gạch ngang trên từng số nha!! Nhìu qá nên mình không viết hết dấu gạch ngang)
a, CMR \(\overline{abc}\) là số chẵn và \(\overline{abc}\) chia hết cho 11
b, Tìm số \(\overline{abc}\) biết a = 1
Cho phép tính cộng: . Như vậy
HEPL MEEEEEEEEEEEEEEEE!
Xét số \(\overline{abc}\) = ab + bc + ca + ac + cb + ba
a, CMR \(\overline{abc}\) là số chẵn và \(\overline{abc}\) chia hết cho 11
b, Tìm số \(\overline{abc}\) biết a = 1
Chứng minh rằng ( đưa các lũy thừa về cùng cơ số rồi đặt thừa số chung)
7) \(\overline{abc}\) + \(\overline{bca}\) + \(\overline{cab}\) \(⋮\) 37
chứng minh rằng
\(\overline{ba}+\overline{ab}⋮11\)
a.Chứng minh rằng (\(\overline{ab}\) + \(\overline{cd}\) + \(\overline{eg}\)) \(⋮\) 11 thì \(\overline{abcdeg}\) \(⋮\) 11.
b. Chứng minh rằng 1028 +8 \(⋮\) 72