chứng minh rằng n+1 phần n+2 là phân số tối giản với mọi số nguyên n
Cho phân số A = n + 1/n - 3 (n thuộc Z)
Tìm n để A là phân số tối giản
Cho phân số A = n + 1/n - 3 (n thuộc Z)
Tìm n để A là phân số tối giản
Cho phân số A = n + 1/n - 3 (n thuộc Z) Tìm n để A là phân số tối giản
chứng tỏ rằng các phân số tối giản với mọi số tự nhiên n : n+1/2n+3
Chứng tỏ rằng \(\dfrac{2n+5}{n+3}\) ( n \(\in\) N ) là 1 phân số tối giản.
bài 1: với mọi số tự nhiên n chứng minh các phân số sau là phân số tối giản
A=2n+1/2n+2
B=2n+3/3n+5
Bài 2:
a) Cho phân số: N=5n+7/2n+1( n thuộc Z, n khác -1/2). Tìm n để N là phân số tối giản
b) Cho phân số: P=5-2n/4n+5 ( n thuộc Z, n khác -5/4). Tìm n để P là phân số tối giản
giúp mk với
mk sẽ tick cho!!
Cho phân số \(\dfrac{a}{b}\) chưa tối giản . Chứng minh rằng phân số \(\dfrac{a+b}{b}\) chưa tối giản \(\left(a,b\in Z,b\ne0\right)\)