\(a+b+c+2=abc\)
\(\Leftrightarrow\left(a+1\right)\left(b+1\right)+\left(b+1\right)\left(c+1\right)+\left(c+1\right)\left(a+1\right)=\left(a+1\right)\left(b+1\right)\left(c+1\right)\)
\(\Leftrightarrow\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=1\)
\(a+b+c+2=abc\)
\(\Leftrightarrow\left(a+1\right)\left(b+1\right)+\left(b+1\right)\left(c+1\right)+\left(c+1\right)\left(a+1\right)=\left(a+1\right)\left(b+1\right)\left(c+1\right)\)
\(\Leftrightarrow\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=1\)
cho a,b,c khác 0 thỏa \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) chứng minh rằng \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
CMR với mọi a, b, c > 0 thì:
\(a^2+b^2+c^2+2abc=1\Leftrightarrow\frac{a}{a+bc}+\frac{b}{b+ca}+\frac{c}{c+ab}=2\)
Bài 1: Chứng minh rằng (x, y, z > 0)
Bài 2: Cho a + b + c > 0; abc > 0; ab + bc + ca > 0. Chứng minh rằng a > 0; b > 0; c > 0.
Bài 3: Chứng minh rằng (a, b, c > 0)
Bài 4: Chứng minh rằng (a + b) (b + c) (c + a) 8abc (a, b, c 0)
Bài 5: Chứng minh rằng (a, b, c, d 0)
Bài 6: Cho x, y, z > 0 thỏa mãn .
Chứng minh .
Bài 7: Cho a, b, c là độ dài 3 cạnh của 1 tam giác. Chứng minh rằng (a+b-c) (b+c-a) (c+a-b) ab.
Bài 8: Cho x, y, z > 0; x+y+z = 1. Chứng minh rằng .
Bài 9: Cho 2 số có tổng không đổi. Chứng minh rằng tích của chúng lớn nhất khi và chỉ khi 2 số đó bằng nhau.
Bài 10: Cho a, b, c > 0. Chứng minh rằng .
Cho a,b > 0, c ≠ 0. CMR:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)
Cho biểu thức \(A=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)( với a>0 và a≠1 )
a/ Rút gọn biểu thức A.
b/ Chứng minh rằng A<1 với mọi a>0 và a≠1.
c/ Tìm a để A= \(\frac{1}{2}\)
Cho a,b,c>0 thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge a+b+c\). Chứng minh rằng: a+b+c\(\le3abc\)
a) Cho a,b>0 chứng minh a\(^3\)+b\(^3\)\(\ge\)ab(a+b)
b) Cho a,b,c>0 thỏa mã abc=1 chứng minh \(\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\le1\)
Cho các số a,b,c dương. Chứng minh rằng \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2\sqrt{a}}{a^3+b^2}+\frac{2\sqrt{b}}{b^3+c^2}+\frac{2\sqrt{c}}{c^3+a^2}\)
Cho các số a,b,c dương. Chứng minh rằng \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2\sqrt{a}}{a^3+b^2}+\frac{2\sqrt{b}}{b^3+c^2}+\frac{2\sqrt{c}}{c^3+a^2}\)