Vẽ đồ thị của các hàm số sau:
a)\(y=\left|-x^2+2x+3\right|\)
b) \(y=-x^2-2\left|x\right|+3\)
c) \(y=\left\{{}\begin{matrix}\left|-x^2-2x+3\right|\left(\forall x\ge1\right)\\-x^2-2\left|x\right|+3\left(\forall x< 1\right)\end{matrix}\right.\)
Cho đường thẳng (d) có phương trình y = f(x) = (m - 2)x - 3m + 1 (m là tham số). Tìm m để f(x) ≥ 1, ∀x ∈ [-1;1]
Tập xác định của hàm số \(y=\dfrac{x^2+1}{\left|2x-4\right|+\left|1+x\right|-\left|5-x\right|}\) có dạng \(\left(-\infty;a\right)\cup\left(b;+\infty\right)\). Tìm ab
21. cho hàm số \(y=\left(1+m\right)x^2-2\left(m-1\right)x+m-3\) \(\left(P_m\right)\). chứng tỏ rằng \(\left(P_m\right)\) luôn đi qua 1 điểm cố định và tìm tọa độ cố định đó
tìm m để pt sau có 2 nghiệm phân biệt :\(x^3-\left(m+1\right)x^2-\left(2m^2-3m+2\right)x+2m\left(2m-1\right)=0\)
rất mong mọi người giúp đỡ
cho hàm số \(y=\left(1+m\right)x^2-2\left(m-1\right)+m-3\) \(\left(P_m\right)\). Chứng minh \(\left(P_m\right)\) luôn đi qua 1 điểm cố định. Tìm điểm cố định đó
Cho \(x^2-mx+m-2=0\left(1\right)\)với m là tham số .
a, Chứng minh (1) luôn có hai nghiệm phân biệt với mọi giá trị của m.
b, Gọi x1, x2 là các nghiệm của phương trình(1) . Tìm m để biểu thức B=\(2\left(x_1^2+x_2^2\right)-x_1x_2\) đạt giá trị nhỏ nhất.
Khảo sát sự biến thiên và vẽ dồ thị các hàm số sau
1 , y = \(x\left|x-2\right|+1\)
2 , y = \(\left|x^2-2x+3\right|\)
3 , y = \(x^2-4\left|x\right|+2\)
4 , y= \(x^2+x\left|x+2\right|-4\)
5 , y = \(\left(x+2\right)\left(\left|x\right|-1\right)\)
6 , y = \(\left\{{}\begin{matrix}2xneux< 0\\x^2-xneux\ge0\end{matrix}\right.\)
7 , y = \(x\left|x\right|-2x-1\)
Tìm tập xác định của hàm số y=\(\left\{{}\begin{matrix}\frac{1}{x-3}với...x\ge1\\\sqrt{2-x}với...x< 1\end{matrix}\right.\)