Đại số lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
tèn tén ten

Chứng minh rằng từ tỉ lệ thức \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\) suy ra hệ thức a2 = bc

soyeon_Tiểubàng giải
1 tháng 11 2016 lúc 17:48

\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

=> (a + b).(c - a) = (c + a).(a - b)

=> (a + b).c - (a + b).a = (c + a).a - (c + a).b

=> a.c + b.c - a2 - a.b = a.c + a2 - b.c - a.b

=> b.c - a2 = a2 - b.c

=> b.c + b.c = a2 + a2

=> 2.b.c = 2.a2

=> b.c = a2 (đpcm)

Nguyễn Anh Duy
1 tháng 11 2016 lúc 17:53

Cách 1:

\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\Rightarrow\frac{a+b}{c+a}=\frac{a-b}{c-a}\)

\(\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+a\right)+\left(c-a\right)}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+a\right)-\left(c-a\right)}\)

\(\Rightarrow\frac{a}{c}=\frac{b}{a}\Rightarrow a^2=b.c\)

Cách 2: Đặt \(\frac{a+b}{a-b}=\frac{c+a}{c-a}=k,\) ta có:

\(a+b=k\left(a-b\right)\)\(c+a=k\left(c-a\right)\)

\(\Rightarrow a\left(1-k\right)=b\left(-k-1\right)\)\(c\left(1+k\right)=a\left(-k-1\right)\)

\(\Rightarrow\frac{a}{b}=\frac{k+1}{k-1}\)\(\frac{c}{a}=\frac{k+1}{k-1}\)

Từ hai đẳng thức cuối ta được:

\(\frac{a}{b}=\frac{c}{a}\Rightarrow a^2=b.c\)

tèn tén ten
4 tháng 11 2016 lúc 16:33

Thanks


Các câu hỏi tương tự
Nguyễn Hữu Tuyên
Xem chi tiết
tèn tén ten
Xem chi tiết
tèn tén ten
Xem chi tiết
doan truc van
Xem chi tiết
Hello Kitty
Xem chi tiết
tèn tén ten
Xem chi tiết
Ichigo
Xem chi tiết
Hello Kitty
Xem chi tiết
Nguyễn Thị Hồng Vân
Xem chi tiết