\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
=> (a + b).(c - a) = (c + a).(a - b)
=> (a + b).c - (a + b).a = (c + a).a - (c + a).b
=> a.c + b.c - a2 - a.b = a.c + a2 - b.c - a.b
=> b.c - a2 = a2 - b.c
=> b.c + b.c = a2 + a2
=> 2.b.c = 2.a2
=> b.c = a2 (đpcm)
Cách 1:
\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\Rightarrow\frac{a+b}{c+a}=\frac{a-b}{c-a}\)
\(\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+a\right)+\left(c-a\right)}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+a\right)-\left(c-a\right)}\)
\(\Rightarrow\frac{a}{c}=\frac{b}{a}\Rightarrow a^2=b.c\)
Cách 2: Đặt \(\frac{a+b}{a-b}=\frac{c+a}{c-a}=k,\) ta có:
\(a+b=k\left(a-b\right)\) và \(c+a=k\left(c-a\right)\)
\(\Rightarrow a\left(1-k\right)=b\left(-k-1\right)\) và \(c\left(1+k\right)=a\left(-k-1\right)\)
\(\Rightarrow\frac{a}{b}=\frac{k+1}{k-1}\) và \(\frac{c}{a}=\frac{k+1}{k-1}\)
Từ hai đẳng thức cuối ta được:
\(\frac{a}{b}=\frac{c}{a}\Rightarrow a^2=b.c\)