Vẽ hình thang ABCD nối B với D
Áp dụng bất đăng thức tam giác được:
BD + AB > AD (1)
BD + CD > BC (2)
Lấy (2) trừ (1) ta được:
BD + CD - BD - AB > BC - AD
\(\Leftrightarrow\) CD - AB > BC - AD
kẻ hình thang ABCD
kẻ 2 đường cao AH và BK nối B với H
xét tam giác ABH và tam giác KBH
có ^ABH = ^KBH ( 2gocs so le trong )
HB chung
=> tam giác ABH = tam giác KBH (cạnh huyền +góc nhọn )
=> AB =HK ( 2 cạnh tương ứng )
xét tam giác BKC có BC>KC ( trong tam giác vuông cạnh huyền là cạnh lớn nhất )(1)
xét tam giác AHD có AD>HD (trong tam giác vuông cạnh huyền là cạnh lớn nhất)(2)
từ (1) và (2) => BC+AD >KC+HD
ta lại có DH+DK +HK =DC
mà AB=HK (C/m )
=> DH+DK+AB =dc
ta có DC-AB = DH+DK+AB-AB= DH+DK
mà DH+DK<BC+AD(c/m)
=>DC -AB< BC+AD
vậy tổng hai cạnh bên của hình thang lớn hơn hiệu hai đáy
Giả sử hình thang ABCD có AB // CD
Từ B kẻ đường thẳng song song với AD cắt CD tại E.
Hình thang ABED có hai cạnh bên song song nên AB = ED và AD = BE
Ta có: CD – AB = CD – ED = EC (1)
Trong ΔBEC ta có:
BE + BC > EC (bất đẳng thức tam giác)
Mà BE = AD
Suy ra: AD + BC > EC (2)
Từ (1) và (2) suy ra: AD + BC > CD – AB