a,Chứng minh rằng với mọi số tự nhiên n khác 0 ta luôn có:
1²+2²+3²+...+n²=n.(n+1).(2n+1)/6
b,Chứng minh rằng
A=1.5+2.6+3.7+...+2023.2027
chia hết các số 11;23 và 2023
c,Tìm tất cả các số tự nhiên n (1 ≤ n ≤ 2000) để biểu thức B=1.3+2.3+...+n.(n+2) chia hết cho 2027
1) Chứng minh rằng với mọi số nguyên m, n ta có
a) (m^3+2m, m^4+3m^2+1)=1
b) ((m^3)n+2m, nm+1)=1
chứng minh rằng không có số tựn nhiên nào thỏa mãn hệ thức
n3 + 2018n = 20192018+ 1
a) Chứng tỏ rằng trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
b) Chứng minh A = (17n +1 ) (17n + 2 ) ⋮ 3
Cho A = 1/11 + 1/12 + 1/13 + ... + 1/70
a, Chứng minh rằng : A > 4/3
b, Chứng minh rằng : A < 5/2
Chứng minh rằng với mọi n thuộc Z ta luôn co :
n (5n + 3 ) chia hết cho 2
1.Chứng minh rằng:
A= 1+3+3^2+3^3+....+3^11 Chia hết cho 4
2. Chứng minh rằng:
C= 5+5^2+5^3+...+5^8 chia hết cho 30.
cho A= 1+3+32+33+..........+ 311 a. chứng minh rằng Achia hết cho 4 ;b.chứng minh rằng Achia hết 10;c.chứng minh rằng A chia hết cho 13
cho hai số nguyên a và b không chia hết cho 3 nhưng khi chia cho 3 thì có cùng số dư chứng minh rằng (ab-1)chia hết cho 3