Violympic toán 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Quang

cho hai số nguyên a và b không chia hết cho 3 nhưng khi chia cho 3 thì có cùng số dư chứng minh rằng (ab-1)chia hết cho 3

Mac Willer
7 tháng 5 2021 lúc 22:07

vì số chẵn >3 khi chia luông dư một, số lẻ thì dư hai

mà chẵn.lẻ=chẵn

a khác b nên ab-1 chia hết cho 3

Cách hai: vì một số lí do nào đó nên (ab-1) chia hết cho3

Lê Quang
8 tháng 5 2021 lúc 20:45

Ta có:a ko chia hết cho 3

          b ko chia hết cho 3

          Và ki a và b chia 3 có cùng số dư

Suy ra: Trường hợp 1:a và b có dạng 3k+1

⇒ab−1=(3k+1)(3k+1)−1⇒ab−1=(3k+1)(3k+1)−1

⇒ab−1=9k2+3k+3k+1−1⇒ab−1=9k2+3k+3k+1−1

ab−1=9k2+3k+3kab−1=9k2+3k+3k

⇒ab−1=3(3k2+k+k)⋮3⇒ab−1=3(3k2+k+k)⋮3(1)

           Trường hợp 1:a và b có dạng 3k+2

⇒ab−1=(3k+2)(3k+2)−1⇒ab−1=(3k+2)(3k+2)−1

⇒ab−1=9k2+6k+6k+4−1⇒ab−1=9k2+6k+6k+4−1

ab−1=9k2+6k+6k+3ab−1=9k2+6k+6k+3

⇒ab−1=3(3k2+2k+2k+1)⋮3⇒ab−1=3(3k2+2k+2k+1)⋮3(2)

Từ (1) và (2)

Suy ra: ab-1 chia hết cho 3 (điều phải chứng minh)


Các câu hỏi tương tự
dream XD
Xem chi tiết
Thái An Phạm Lê
Xem chi tiết
Trịnh Gia Bảo
Xem chi tiết
Mèo Mun
Xem chi tiết
Đỗ Huỳnh Thúy Hương
Xem chi tiết
Đỗ Yến Nhi
Xem chi tiết
Lê Minh Trang
Xem chi tiết
Nguyễn Thị Hà Vy
Xem chi tiết
Huy Hoàng Nguyễn
Xem chi tiết