Nếu \(\frac{7n^2+1}{6}\) là số tự nhiên với n thuộc N thì n/2(*) và n/3(**) là phân số tối giải:
Ta có:\(\frac{7n^2+1}{6}=\) \(\frac{6n^2+n^2+1}{6}=n^2+\frac{n^2+1}{6}\) \(\Rightarrow\left(n^2+1\right)⋮6\)
=> n2 phải là số lẻ=> n phải là số lẻ => không chia hết cho 2=> (*) được c/m.
g/s: n chia hết cho 3 => n=3k
{với k phải lẻ, nếu k chẵn => n chẵn=>k=2t+1=> n=3(2k+1)=6t+3}
=>\(\frac{n^2+1}{6}=\frac{\left(6t+3\right)^2+1}{6}=\frac{36t^2+36t+9+1}{6}=6t^2+6t+\frac{10}{6}\left(1\right)\)
(1) không nguyên với mọi t => điều g/s là sai=> (**) được c/m