Cho phương trình: -(m+4)x + 3m +3=0 (x là ẩn số) a) Chứng minh phương trình đã cho luôn có nghiệm với mọi gia trị của m b) Tính tổng và tích hai nghiệm của phương trình c) Tìm m để phương trình có hai nghiệm x1,x2 thỏa mãn: - x1 = x2 - + 8
Cho phương trình bậc hai x2+5x+m-3=0 (∗∗) . (m là tham số. Tìm điều kiện của m để phương trình (*) có hai nghiệm x1, x2 thỏa mãn x1<2<x2
: Cho phương trình: x2 – 5x + m = 0 (m là tham số).
a) Giải phương trình trên khi m = 6.
b) Tìm m để phương trình trên có hai nghiệm x1, x2 thỏa mãn: \(\left|x_1-x_2\right|=3\).
1. cho phương trình :x2+5x+m-2=0( m là tham số)
a, giải phương trình khi m=-12
b, tìm m để phương trình có hai nghiệm phân biệt x1,x2 thỏa mãn \(\dfrac{x}{x_1-1}+\dfrac{1}{x_2-1}=2\)
Cho phương trình x2+mx+2m-4=0 a Chứng tỏ phương trình trên luôn có nghiệm với mọi giá trị m b Tính tổng và tích của 2 nghiệm theo m c Tìm m để phương trình có 2 nghiệm x1,x2 thỏa mãn x1^2+x2^2=4
xét các số thực a,b,c (a≠0) sao cho phương trình ax2+bx+c=0 có 2 nghiệm m, n thỏa mãn \(0\le m\le1;0\le m\le1\). tìm GTNN của \(Q=\dfrac{2a^2-ac-2ab+bc}{a^2-ab+ac}\)
Cho 2 số thực a,b không âm thỏa mãn 18a+4b \(\ge\) 2013 . chứng minh rằng phương trình sau luôn có nghiệm \(18ax^2+4bx+671-9a=0\)
Cho phương trình ẩn x: x2 – x + 1 + m = 0 (1)
a) Giải phương trình đã cho với m = 0.
b) Tìm các giá trị của m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn: x1x2.( x1x2 – 2 ) = 3( x1 + x2 ).
Cho hệ phương trình: 2X +Y = 3m-2 ( m là tham số ) X - Y = 5 a) Giải hệ phương trình khi m = - 4 ; b) Tìm m để hệ phương trình có nghiệm (x; y) thỏa mãn: x + y = 13.