Cho a,b,c > 0. CMR: (a + b + c)2 \(\ge\) 3(ab + bc + ca)
và \(\frac{\left(a+b+c\right)^2}{ab+bc+ca}+\frac{ab+bc+ca}{\left(a+b+c\right)^2}\ge\frac{10}{3}\)
Cho (a+b+c)2=a2+b2+c2 và a, b, c là 3 số khác 0
Chứng minh \(\frac{1}{a^{ }^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{3}{abc}\)
Cho a,b,c khác 0
Chứng minh rằng :\(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\)>\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
Chứng minh rằng:
\(\frac{\left(a+b\right)^2}{\left(a-b\right)^2}+\frac{\left(b+c\right)^2}{\left(b-c\right)^2}+\frac{\left(c+a\right)^2}{\left(c-a\right)^2}\ge2\)
Tìm các số A,B,C để có
a, \(\frac{x^2-x+2}{\left(x-1\right)^3}=\frac{A}{\left(x-1\right)^3}+\frac{B}{\left(x-1\right)^2}+\frac{C}{x-1}\)
b, \(\frac{x^2+2x-1}{\left(x-1\right)\left(x^2+1\right)}=\frac{A}{x-1}+\frac{Bx}{x^2+1}\)
Cho: \(\frac{a^2+b^2-c^2}{2ab}+\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ac}=1\)
Chứng minh:
a) Trong 3 số a, b, c có một số bằng tổng hai số kia.
b) Trong 3 phân thức trên có một phân thúc bằng -1 và hai phân thức còn lại bằng 1.
Chứng minh đẳng thức:
\(\frac{b+c}{\left(a-b\right)\left(a-c\right)}+\frac{c+a}{\left(b-c\right)\left(b-a\right)}+\frac{a+b}{\left(c-a\right)\left(c-b\right)}=0\)
Cho \(a+b+c=0\)
Tính \(Q=\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}\)
Cho ba số thực a, b, c. Chứng minh rằng:
\(\frac{a^2}{4}+b^2+c^2\ge ab-ac+2bc\)