a)\(x^2+2xy+2y^2+2y+1\)
\(=\left(x^2+2xy+y^2\right)+\left(y^2+2y+1\right)\)
\(=\left(x+y\right)^2+\left(y+1\right)^2\ge0\)
Vậy đa thức trên chỉ nhận giá trị không âm
b)\(9b^2-6b+4c^2+1\)
\(=\left(9b^2-6b+1\right)+4c^2\)
\(=\left(3b-1\right)^2+4c^2\ge0\)
Vậy đa thức trên chỉ nhận giá trị không âm
c)\(x^2+y^2+2x+6y+10\)
\(=\left(x^2+2x+1\right)+\left(y^2+6y+9\right)\)
\(=\left(x+1\right)^2+\left(y+3\right)^2\ge0\)
Vậy đa thức trên chỉ nhận giá trị không âm
a) x2 + 2xy + 2y2 + 2y +1
= (x2 + 2xy + y2) + (y2 + 2y +1)
= (x + y)2 + (y + 1)2
ta có : (x + y)2 + (y + 1)2 \(\ge\) 0
hay đa thức chỉ nhận giá trị không âm
b) 9b2 - 6b + 4c2 + 1
= [(3b)2 - 6b + 1] + 4c2
= (3b + 1)2 + 4c2
có (3b + 1)2 \(\ge\) 0
=> (3b + 1)2 + 4c2 \(\ge\) 0
hay đa thức chỉ nhận giá trị không âm
c) x2 + y2 + 2x + 6y +10
= (x2 + 2x +1 ) + (y2 + 6y + 32 )
= (x + 1)2 + ( y + 3)2
có (x + 1)2 + (y +3)2 \(\ge\) 0
nên đa thức chỉ nhân giá trị không âm