a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.
b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương.
Câu 1. (4 điểm)
Cho biểu thức:
a) Rút gọn biểu thức
b) Tìm giá trị nguyên của để nhận giá trị nguyên
Câu 2. (4 điểm)
a) Chứng minh rằng: với
b) Cho Tìm tất cả các số tự nhiên để là số nguyên tố.
Chứng minh rằng:
x2 + 5y2 + 2x - 4xy - 10y + 14 > 0 với mọi x, y.
8. Tổng ba số bằng 9, tổng bình phương của chúng bằng 53. Tính tổng các tích của hai số trong ba số ấy.
9. Chứng minh tổng các lập phương của ba số nguyên liên tiếp thì chia hết cho 9
Bài 2 :
a, Cho các số a,b,c,d là các số nguyên dương đôi 1 khác nhau và thỏa mãn :
\(\dfrac{2a+b}{a+b}+\dfrac{2b+c}{b+c}+\dfrac{2c+d}{c+d}+\dfrac{2d+a}{d+a}=6\) . Chứng minh \(A=abcd\) là số chính phương
b, Tìm nguyên a để \(a^3-2a^2+7a-7\) chia hết cho \(a^2+3\)
Chứng minh rằng điều kiện cần và đủ để 1 số chia hết cho 17 là tổng của 2 lần chữ số hàng hục và 2 lần chữ số hàng đơn vị của số đó chia hết cho 17
Chứng minh rằng với mọi x thuộc z thì:
\(A=\dfrac{x^3-x^2-8x+12}{x^2+4-4x}\) là số nguyên
Cho a,b,c là các số hữu ti khác 0 thỏa mãn a+b+c=0.Chứng minh rằng: \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\) là bình phương của một số hữu tỉ
Bài 1: Cho a và b là hai số tự nhiên. Biết a chia cho 3 dư 1; b chia cho 3 dư 2. Hỏi tích A = a.b chia cho 3 dư bao nhiêu ?
Bài 2: Chứng minh rằng với mọi nÎ Z thì
a) n.(n + 5) - (n - 3).(n + 2) chia hết cho 6.
b) (n - 1).(n + 1) - (n - 7).( n - 5) chia hết cho 12.
Bài 3: Xác định các hệ số a; b; c biết
a) (2x - 5).(3x + b) = ax2 + x + c
b) (ax + b).(x2 - x - 1) = ax3 + cx2 - 1
A)Tính (a-b)2009 biết a+b=7 và ab=12 và a<b.
B)Cho 0<x<y và 2x2+2y2=5xy.Hãy tính A=.x+yx−y
C)Chứng minh:4x2-4x+2>0 với ∀x
D)Tìm giá trị nhỏ nhất của biểu thức 3x2-x+1.
E)Chứng minh rằng tổng lập phương của một số nguyên với 11 lần số đó là một số chia hết cho 6.
Mọi người giúp mình nhé!
Cho x,y là các số hữu tỉ khác 1 thỏa mãn :
\(\frac{1-2x}{1-x}+\frac{1-2y}{1-y}=1\)
Chứng minh rằng M= x2+y2-xy là bình phương của một số hữu tỉ