Ta có :
\(x^2+2\left(x+1\right)^2+3\left(x+2\right)^2+4\left(x+3\right)^2\)
\(=x^2+2\left(x^2+2+1\right)+3\left(x^2+4x+4\right)+4\left(x^2+6x+9\right)\)
\(=x^2+2x^2+4x+2+3x^2+12x+12+4x^2+24x+36\)
\(=10x^2+40x+50\)
\(=\left(x^2+10x+25\right)+\left(9x^2+30x+25\right)\)
\(=\left(x+5\right)^2+\left(3x+5\right)^2\)
Vậy biểu thức trên viết được dưới dạng tổng các bình phương của 2 biểu thức(đpcm)