⇔ 100a+10b + c − 100c − 10b − a=99a − 99c = 99 (a−c)
=> abc - cba chia hết cho 99
Ta có : \(\overline{abc}-\overline{cba}=\left(100a+10b+c\right)-\left(100c+10b+a\right)\)
\(=\left(100a-a\right)+\left(10b-10b\right)-\left(100c-c\right)\)
\(=99a-99c=99\left(a-c\right)\) chia hết cho 99
\(\overline{abc}-\overline{cba}=\left(100a+10b+c\right)-\left(100c+10b+a\right)=99a-99c=99\left(a-c\right)\)Vì 99(a - c) \(⋮\) 99 \(\Rightarrow\) \(\overline{abc}-\overline{cba}\) \(⋮\) 99
\(\Rightarrow\) Điều phải chứng minh
abc-cba
=100a+10b+c-100c-10b-a
=99a-99c chia hết cho 99
⇔100a+10b+c−100c−10b−a=99a−99c=99(a−c)
=> abc -cbachia hết cho 99