1/Cho (a2 - bc)( b- abc) = (b2 -ac)(a-abc)
a/ Chứng minh rằng: 1/a + 1/b + 1/c = a+b+c
b/ Chứng tỏ : a(b-c)(b+c-a)2 + c(a-b)(a+b-c)2 = b(a-c)(a+c-b)
2/ Với x là 1 số thực bất kỳ. Chứng minh rằng x-x2 +1: x2 -1 <1
3/ Cho các số x,y thỏa mãn : Chứng minh rằng x2 +y2 +(1+xy : x+y)2 >=2
Chứng minh a^2/b^2+b^2/c^2+c^2/a^2 >= c/b+b/a+a/c
Cho a, b, c là các độ dài thỏa mãn điều kiện: \(\dfrac{a^{2}+b^{2}-c^{2}}{2ab}+ \dfrac{b^{2}+c^{2}-a^{2}}{2bc}+ \dfrac{c^{2}+a^{2}-b^{2}}{2ca} >1\)
Chứng minh rằng a, b, c là các cạnh của một tam giác.
Chứng minh rằng : a2 + b2 + c2 ≥ a( b + c )
Chứng minh rằng: Với a, b là các số dương thì: a/b + b/a>= 2
Cho a, b, c là ba số thực thỏa mãn abc = 1 và a^3 > 36. Chứng minh rằng: 1/a*(b^2 + c^2 - bc) > b + c - a/3
Chứng minh rằng với mọi a, b, c, d thì: a2 + b2 + c2 + d2 +1 \(\ge\) a + b + c + d
cho a,b,c là các số dương. chứng minh các bất đẳng thức: \(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}\ge\dfrac{a+b+c}{2}\)
Cho a,b,c là các số dương. Chứng minh bđt:
\(\dfrac{a^2}{b+c} + \dfrac{b^2}{c+a} + \dfrac{c^2}{a+b} >= \dfrac{a+b+c}{2}\)