Nên bổ sung thêm đk a,b không âm
\(a+4b\ge\frac{16ab}{1+4ab}\)
\(\Leftrightarrow\left(a+4b\right)\left(1+4ab\right)\ge16ab\)
AM-GM:\(a+4b\ge4\sqrt{ab};1+4ab\ge4\sqrt{ab}\)
\(\Rightarrow\left(a+4b\right)\left(1+4ab\right)\ge16ab\left(đpcm\right)\)
Nên bổ sung thêm đk a,b không âm
\(a+4b\ge\frac{16ab}{1+4ab}\)
\(\Leftrightarrow\left(a+4b\right)\left(1+4ab\right)\ge16ab\)
AM-GM:\(a+4b\ge4\sqrt{ab};1+4ab\ge4\sqrt{ab}\)
\(\Rightarrow\left(a+4b\right)\left(1+4ab\right)\ge16ab\left(đpcm\right)\)
Cho a, b > 0. Chứng minh \(\frac{a^2+b^2}{\left(4a+4b\right)\left(3a+4b\right)}\ge\frac{1}{25}\)
chứng minh rằng a2-4ab+5b2+10a-22b+28\(\ge\)2
Cho các số thực a,b,c thay đổi thỏa mãn điều kiện: \(\left\{{}\begin{matrix}a,b,c>0\\abc=1\end{matrix}\right.\)
Chứng minh rằng:
\(A=\frac{a^4b}{a^2+1}+\frac{b^4c}{b^1+1}+\frac{c^4a}{c^2+1}\ge\frac{3}{2}\)
Cho a, b, c >0. Chứng minh rằng \(\frac{a^2}{b^3}+\frac{b^2}{c^3}+\frac{c^2}{a^3}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Chứng minh rằng với mọi a > 0 ta có: \(\frac{a}{a^2+1}+\frac{5\left(a^2+1\right)}{2a}\ge\frac{11}{2}.\)
cho a\(\ge4\).Chứng minh rằng:\(a+\frac{1}{a}\ge\frac{17}{4}\)(giúp mk với ạ)
Cho a,b,c >0 và abc = 1 . Chứng minh rằng \(\frac{1}{a^2+b^2+1}+\frac{1}{b^2+c^2+1}+\frac{1}{a^2+c^2+1}\)≥1
Cho : a + 4b = 1 . C/m : \(a^2+4b^2\ge\frac{1}{5}\)
Chứng minh rằng: \(\left(a+\frac{1}{b}\right).\left(b+\frac{1}{c}\right).\left(c+\frac{1}{a}\right)\ge\left(\frac{10}{3}\right)^2\)với a,b,c >0 và a+b+c=1.