Cho \(x,y,z,t>0\) thỏa mãn \(xyzt=1\)
Chứng minh \(\dfrac{1}{x^3\left(yz+zt+ty\right)}+\dfrac{1}{y^3\left(xz+zt+tx\right)}+\dfrac{1}{z^3\left(xy+yt+tx\right)}+\dfrac{1}{t^3\left(xy+yz+zx\right)}\ge\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{t}\right)\)
cho 3 số thực dương z;y;z thỏa mãn x+y+z<hoạc = 3/2
tìm GTNN của biểu thức :
\(P=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\)
cho x,y,z là số thực dương thỏa mãn xy+yz+xz=xyz
cmr \(\dfrac{xy}{z^3\left(1+x\right)\left(1+y\right)}+\dfrac{yz}{x^3\left(1+y\right)\left(1+z\right)}+\dfrac{xz}{y^3\left(1+x\right)\left(1+z\right)}\ge\dfrac{1}{16}\)
Cho \(\left\{\begin{matrix}x\ge0;y\ge0;z\ge0\\x+y+z=1\end{matrix}\right.\)
Chứng minh rằng : \(0\le xy+yz+zx-2xyz\le\frac{7}{27}\)
GIÚP MÌNH NHÉ, MẶC DÙ TẾT NHÉ
cho các số thực ko âm x,y,z thỏa mãn \(x+y+z=1\) .chứng minh: \(xy+yz+zx\le\dfrac{8}{27}\)
Cho x,y,z > 0 . Tìm giá trị nhỏ nhất của biểu thức:
\(P=x\left(\frac{x}{2}+\frac{1}{yz}\right)+y\left(\frac{y}{2}+\frac{1}{zx}\right)+z\left(\frac{z}{2}+\frac{1}{xy}\right)\)
Chứng minh rằng với mọi x, y, z >0, ta có:
√(x2 + xy + y2) + √(y2 + yz + z2) + √(z2 + zx + x2) ≥ √3(x + y + z)
Cho các số dương x;y;z. CMR:
\(\dfrac{xy}{x^2+yz+zx}+\dfrac{yz}{y^2+zx+xy}+\dfrac{zx}{z^2+xy+yz}\le\dfrac{x^2+y^2+z^2}{xy+yz+zx}\)
Cho \(x,y,z\in\left[2018,2019\right]\)
Tìm max của \(f\left(x,y,z\right)=\frac{\left|2018.2019-xy\right|}{\left(x+y\right)z}+\frac{\left|2018.2019-yz\right|}{\left(y+z\right)x}+\frac{\left|2018.2019-zx\right|}{\left(z+x\right)y}\)