cmr: Với a, b, c > 0 chứng minh rằng 4/a + 5/b + 3/c ≥ 4(3/(a + b) + 2/(b + c) + 1/(c + a))
Bài 1: Cho a > 0, b > 0. Chứng minh rằng:
a/√b + b/√a >= √a + √b
Bài 2: Cho a, b, c là các đô dài của các cạnh tam giác và p là nửa chu vi. Chứng minh rằng:
(p - a)(p - b) <= c^2/4
Bài 3:Chứng minh rằng với mọi số thực a ta có:3(a^4+a^2+1)>=(a^2+a+1)^2
Bài 4:Cho 3 số thực dương a,b,c.chứng minh rằng:(1+a/b)(1+b/c)(1+c/a)>=8
Bài 5:Cho a,b là hai số dương. Chứng minh:a^2+b^2+1/a++1/b>=2(√a+√b)
Bài 6:Cho ba số dương a,b,c. Chứng minh rằng:ab/(a+b)+bc/(b+c)+ca/(c+a)<=(a+b+c)/2
Bài 7:Cho ba số thực dương a,b,c thỏa mãn:ab+bc+ca=3. Chứng minh rằng:
a^3/(b^2+3)+b^3/(c^2+3)+c^3/(a^2+3)>=3/4
bài 8:Tìm giá trị nhỏ nhất của hàm số f(x)=x+3/(x-2) với x>2
Chứng minh rằng: \(\left(a+\frac{1}{b}\right).\left(b+\frac{1}{c}\right).\left(c+\frac{1}{a}\right)\ge\left(\frac{10}{3}\right)^2\)với a,b,c >0 và a+b+c=1.
cho a>0,b>0 và 1/a + 1/b = 1 chứng minh rằng:
Căn a+b= căn a-1+ căn b-1
cho a, b, c thuộc (0, 1) thỏa mãn abc=(1-a)(1-b)(1-c). chứng minh rằng a² +b² +c² >=3/4
Cho a, b, c >0. Chứng minh rằng \(\frac{a^2}{b^3}+\frac{b^2}{c^3}+\frac{c^2}{a^3}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
1) Cho ba số a, b, c \(\in\) [0;1] (nghĩa là từng số lớn hơn hoặc bằng 0 và bé hơn hoặc bằng 1). Chứng minh rằng: \(ab\le a^ab^b\).
2a0 Cho a, b, c, thỏa mãn \(a+b+c=1\). Chứng minh rằng: \(\dfrac{1}{3^a}+\dfrac{1}{3^b}+\dfrac{1}{3^c}\ge3\left(\dfrac{a}{3^a}+\dfrac{b}{3^b}+\dfrac{c}{3^c}\right)\)
Cho a,b,c>0.Chứng minh rằng:
\(\dfrac{1}{a^3+b^3+abc}+\dfrac{1}{b^3+c^3+abc}+\dfrac{1}{c^3+a^3+abc}\le\dfrac{1}{abc}\)
Cho a, b c > 0 thoả mãn a+b+c=3. Chứng minh rằng: \(\dfrac{a+1}{b^2+1}+\dfrac{b+1}{c^2+1}+\dfrac{c+1}{a^2+1}\ge3\)