Chứng minh phản chứng
a) Với n là số tự nhiên, n2 chia hết cho 2 thì n cũng chia hết cho 2 .
b) Với n là số tự nhiên,n3 chia hết cho 3 thì n cũng chia hết cho 3 .
c) Nếu a+b < 2 thì một trong hai số a và b nhỏ hơn 1.
chứng minh các định lí sau bằng phương pháp phản chứng:
a. nếu x khác -1, y khác -1 thì x+y khác -1
b. trong 1 tứ giác lồi phải có ít nhất 1 góc không nhọn ( lớn hơn hay bằng góc vuông ) và có ít nhất 1 góc không tù ( nhỏ hơn hay bằng góc vuông )
giúp mình nha, mình cảm ơn
1,CM bằng phản chứng:" Nếu pt bậc 2 ax2 + bx + c = 0 thì a và c cùng dấu
2,CM bằng phản chứng: Nếu độ dài các cạnh của tam giác thỏa mãn bất đẳng thức a2 + b2 > 5c2 thì c là độ dài cạnh nhỏ nhất của tam giác
3, Cho a, b, c dương < 1. CMR ít nhất 1 trong 3 BĐT sau sai: \(a\left(1-b\right)>\frac{1}{4},b\left(1-c\right)>\frac{1}{4},c\left(1-a\right)>\frac{1}{4}\)
4, Nếu a1a2 \(\ge\) 2(b1 + b2) thì ít nhất 1 trong 2 pt x2 + a1x + b1 = 0, x2 +a2x + b2 = 0 có nghiệm
5, Cho các số a, b, c thỏa mãn: a + b + c = 0(1), ab + bc + ca > 0(2), abc > 0(3)
CMR cả 3 số đều dương
6, CM bằng phản chứng:"Nếu tam giác ABC có các đường phân giác trong BE = CF thì tam giác ABC cân".
dùng phưng pháp chứng minh phản chúng để chứng minh
a. với n là số nguyên dương, nếu n2 chia hết cho 3 thì n chia hết cho 3
b. chứng minh \(\sqrt{2}\) là số vô tỉ
c. với n là số nguyên dương, nếu n2 là số lẻ thì n là số lẻ
Chứng minh bằng phản chứng:
a. Nếu a, b là 2 số dương thì a+b > 2 căn của án
b. Cho n là số tự nhiên, nếu 5n+5 là số lẻ thì n là số lẻ.
Chứng minh bằng phương pháp phản chứng: nếu 2 số nguyên dương có tổng bình phương chia hết cho 3 thì cả 2 số đó phải chia hết cho 3
chứng minh bằng phản chứng :
cho a,b,c thuộc R thỏa 0<a,b,c<1
CM có ít nhất 1 trong các bất đẳng thức sau sai :
a(1-b) ≥1/4 (1) ; b(1-c) ≥1/4 (2) ; c(1-a) ≥1/4 (3)
Chứng minh bằng phản chứng: Với các số tự nhiên a, b nếu a^2 + b^2 chia hết cho 8 thì a, b không thể đồng thời là số lẻ
Chứng minh bằng phản chứng: Với các số tự nhiên a, b nếu a^2 + b^2 chia hết cho 8 thì a, b không thể đồng thời là số lẻ