Đặt A=n(n+1)(2n+1)
Trường hợp 1: n=3k
\(\Leftrightarrow A=3k\left(3k+1\right)\left(6k+1\right)⋮3\)
Trường hợp 2: n=3k+1
\(A=\left(3k+1\right)\left(3k+2\right)\left(6k+2+1\right)=\left(3k+1\right)\left(3k+2\right)\left(6k+3\right)⋮3\)
Trường hợp 3: n=3k+2
\(A=\left(3k+2\right)\left(3k+3\right)\left(6k+5\right)⋮3\)