Ta có: \(m^2=m\cdot m\)
*Trường hợp 1: M<0
\(\Rightarrow m\cdot m=\left(-m\right)\cdot\left(-m\right)\)
Vì âm nhân âm ra dương nên m2>0
hay (-m)(-m)>0
*Trường hợp 2: M=0
\(\Rightarrow m\cdot m=0\cdot0=0\)
hay m2=0
*Trường hợp 3: M>0
\(\Rightarrow m^2=m\cdot m\)
Vì dương nhân dương ra dương nên m2>0
hay m2\(\ge\)0(đpcm)
Đó là điều hiển nhiên mà :v Mọi số bình phương luôn lớn hơn hoặc bằng không
\(m^2\ge0\forall m\)