Lời giải:
\((1+\cot a)\sin ^3a+(1+\tan a)\cos ^3a\)
\(=(1+\frac{\cos a}{\sin a})\sin ^3a+(1+\frac{\sin a}{\cos a})\cos ^3a\)
\(=(\sin a+\cos a)\sin ^2a+(\cos a+\sin a)\cos ^2a\)
\(=(\sin a+\cos a)(\sin ^2a+\cos ^2a)=(\sin a+\cos a).1=\sin a+\cos a\)
Lời giải:
\((1+\cot a)\sin ^3a+(1+\tan a)\cos ^3a\)
\(=(1+\frac{\cos a}{\sin a})\sin ^3a+(1+\frac{\sin a}{\cos a})\cos ^3a\)
\(=(\sin a+\cos a)\sin ^2a+(\cos a+\sin a)\cos ^2a\)
\(=(\sin a+\cos a)(\sin ^2a+\cos ^2a)=(\sin a+\cos a).1=\sin a+\cos a\)
chứng minh các đẳng thức sau :
a)\(\frac{cos\left(a-b\right)}{cos\left(a+b\right)}=\frac{cota.cotb+1}{cota.cotb-1}\)
b)\(2\left(sin^6a+cos^6a\right)+1=3\left(sin^4a+cos^4a\right)\)
c)\(\frac{tana-tanb}{cotb-cota}=tanatanb\)
d)\(\left(cotx+tanx\right)^2-\left(cotx-tanx\right)^2=4\)
e)\(\frac{sin^3a+cos^3a}{sina+cosa}=1-sinacosa\)
\(\frac{\left(sina+cosa\right)^2-1}{cota-sina.cosa}=2tan^2a\)
tan =\(\sqrt{3}\).Tính A=\(\dfrac{sin^3a-cos^3a}{sina-cosa}\)
Đơn giản biểu thức
a) \(G=\left(1-\sin^2\alpha\right)\cot^2\alpha+1-\cot^2\alpha\)
b) \(E=\dfrac{1-\sin^2\alpha}{2\sin\alpha.\cos\alpha}\)
c) \(P=\cot x+\dfrac{\sin x}{1+\cos x}\)
1. Cho tam giác ABC vuông tại A , AB = 7 , AC = 10 . Tính cos , sin của \(\left(\overrightarrow{AB},\overrightarrow{AC}\right)\) , \(\left(\overrightarrow{AB},\overrightarrow{BC}\right)\) , \(\left(\overrightarrow{AB},\overrightarrow{CB}\right)\)
a) \(\frac{1-sina}{cosa}=\frac{cosa}{1+sina}\)
b) \(\frac{sina}{1+cosa}+\frac{1+cosa}{sina}=\frac{2}{sina}\)
c) \(\frac{cosa}{1+sina}+\frac{cosa}{1-sina}=\frac{2}{cosa}\)
1 . \(\overrightarrow{a}\left(-2,3\right)\) , \(\overrightarrow{b}\left(4,1\right)\) . Tính \(\cos\left(\overrightarrow{a},\overrightarrow{b}\right)\) , \(\cos\left(\overrightarrow{a},\overrightarrow{i}\right)\) , \(\cos\left(\overrightarrow{a}+\overrightarrow{b},\overrightarrow{a}-\overrightarrow{b}\right)\)
Cho biểu thức \(P=sin^2\left(a+b\right)-sin^2a-sin^2b\)
Chứng minh rằng P = 2sina.sinb.cos(a + b)
A=\(\dfrac{1-cosa}{sina}-\dfrac{sina}{1+cosa}\)