Chứng minh \(\frac{a}{b}+\sqrt{\frac{b}{c}}+\sqrt[3]{\frac{c}{a}}>\frac{5}{2}\) với mọi a,b,c >0
Tìm GTNN của \(\frac{\sqrt{x}-1}{\sqrt{x}+2}\)
Cho a,b,c>0 chứng minh \(\frac{a}{b}+\sqrt{\frac{b}{c}}+\sqrt[3]{\frac{c}{a}}\ge\frac{5}{2}\)
Cho các số dương a,b,c. Chứng minh
\(\sqrt{\frac{2}{a}}+\sqrt{\frac{2}{b}}+\sqrt{\frac{2}{c}}\le\sqrt{\frac{a+b}{ab}}+\sqrt{\frac{b+c}{bc}}+\sqrt{\frac{c+a}{ac}}\)
1) Cho a,b,c>0 và a+b+c=3
Chứng minh rằng \(\frac{1}{4a^2+b^2+c^2}+\frac{1}{a^2+4b^2+c^2}+\frac{1}{a^2+b^2+4c^2}\le\frac{1}{2}\)
2) Giaỉ phương trình
\(\frac{4}{\sqrt{x-2}}+\frac{1}{\sqrt{y-1}}+\frac{25}{\sqrt{z-5}}=16-\sqrt{x-2}-\sqrt{y-1}-\sqrt{z-5}\)
Cho a,b,c >0 và a+b+c=\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)Chứng minh
\(\sqrt{\frac{a^3}{1+3bc}}+\sqrt{\frac{b^3}{1+3ac}}+\sqrt{\frac{c^3}{1+3ba}}\ge\frac{3}{2}\)
cho \(a,b,c>\frac{1}{2}\) và thỏa mãn \(a+b+c=3\).Chứng minh rằng
\(\frac{a^2}{\sqrt{5-2\left(b+c\right)}}+\frac{b^2}{\sqrt{5-2\left(a+c\right)}}+\frac{c^2}{\sqrt{5-2\left(a+b\right)}}\ge3\)
Ôn tập Bất đẳng thức
1 , Cho a,b,c<3 thỏa mãn abc(a+b+c)=3 . Tìm GTNN của C= \(\frac{a}{\sqrt{9-b^2}}+\frac{b}{\sqrt{9-c^2}}+\frac{c}{\sqrt{9-a^2}}\)
2, Cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=3\)
Chứng minh a, \(\frac{1}{4-\sqrt{ab}}+\frac{1}{4-\sqrt{bc}}+\frac{1}{4-\sqrt{ca}}\le1\)
b, \(\frac{2a^2}{a+b^2}+\frac{2b^2}{b+c^2}+\frac{2c^2}{c+a^2}\ge a+b+c\)
3, Cho a,b,c >0 và \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=1\)
Tính GTLN của P= \(\frac{1}{\sqrt{5a^2+2ab+2b^2}}+\frac{1}{\sqrt{5b^2+2bc+2c^2}}+\frac{1}{\sqrt{5c^2+2ca+2a^2}}\)
4 , Cho a,b,c>0 và \(ab+bc+ca\ge a+b+c\)
Chứng minh \(\frac{a^2}{\sqrt{a^3+8}}+\frac{b^2}{\sqrt{b^3+8}}+\frac{c^2}{\sqrt{c^3+8}}\ge1\)
cho a,b,c>0 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le16\left(a+b+c\right)\). Chứng minh rằng:
\(\frac{1}{\left(a+b+2\sqrt{a+c}\right)^3}+\frac{1}{\left(b+c+2\sqrt{b+a}\right)^3}+\frac{1}{\left(c+a+2\sqrt{b+c}\right)^3}\le\frac{8}{9}\)
Cho a,b,c dương, Chứng minh: \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}>2\)