Chứng minh
\(\dfrac{\left(a-b\right)^2}{ab}+\dfrac{\left(b-c\right)^2}{bc}+\dfrac{\left(c-a\right)^2}{ca}=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Cho a,b,c>0 và ab+bc+ca=3
CMR: \(\dfrac{1}{a^2+b^2+1}+\dfrac{1}{b^2+c^2+1}+\dfrac{1}{c^2+a^2+1}\le1\)
Cho a,b,c khác 0 thỏa mãn \(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)=8\)
CMR \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}=\dfrac{3}{4}+\dfrac{ab}{\left(a+b\right)\left(b+c\right)}+\dfrac{bc}{\left(b+c\right)\left(c+a\right)}+\dfrac{ca}{\left(c+a\right)\left(a+b\right)}\)
Cho a,b,c >0. Chứng minh rằng
\(\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ac}+\dfrac{1}{c^2+ab}\le\dfrac{a+b+c}{2abc}\)
Rút gọn biểu thức:
a) \(A=\dfrac{bc}{\left(a-b\right)\left(a-c\right)}+\dfrac{ca}{\left(b-c\right)\left(b-a\right)}+\dfrac{ab}{\left(c-a\right)\left(c-b\right)}\)
b) \(B=\dfrac{\left(x+\dfrac{1}{x}\right)^6-\left(x^6+\dfrac{1}{x^6}\right)-2}{\left(x+\dfrac{1}{x}\right)^3+x^3+\dfrac{1}{x^3}}\)
Cho a, b, c là độ dài 3 cạnh của 1 tam giác. CMR:
a) \(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
b) \(\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\ge3\)
c) \(\dfrac{1}{a+b},\dfrac{1}{b+c},\dfrac{1}{c+a}\)cũng là độ dài ba cạnh của 1 tam giác
Cho a;b;c là các số thực thỏa mãn abc=2008
CM: \(\dfrac{2008a}{ab+2008a+2008}+\dfrac{b}{bc+b+2008}+\dfrac{c}{ca+c+1}=1\)
Cho a,b,c là các số thực dương thỏa mãn \(a+b+c=1\)
chứng minh rằng \(\dfrac{ab+c}{c+1}+\dfrac{bc+a}{a+1}+\dfrac{ac+b}{b+1}\le1\)
CMR với a, b, c > 0 thì :
a) \(\dfrac{bc}{a}+\dfrac{ac}{b}+\dfrac{ab}{c}\ge a+b+c\)
b)\(\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ca}{c+a}\le\dfrac{a+b+c}{2}\)