Ta có :
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
...................
\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)
\(\Leftrightarrow\dfrac{1}{3^2}+\dfrac{1}{4^2}+..........+\dfrac{1}{100^2}< \dfrac{1}{2.3}+\dfrac{1}{3.4}+.....+\dfrac{1}{99.100}\)
\(\Leftrightarrow\dfrac{1}{3^2}+\dfrac{1}{4^2}+....+\dfrac{1}{100^2}< \dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+......+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Leftrightarrow\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}-\dfrac{1}{100}\)
\(\Leftrightarrow\dfrac{1}{3^2}+\dfrac{1}{4^2}+.......+\dfrac{1}{100^2}< \dfrac{49}{100}< \dfrac{1}{2}\)
Tham khảo : https://olm.vn/hoi-dap/question/564353.html
đặt dãy tính trên là A,
ta có 1/ 32 = 1/3.3 < 1/ 2.3
1/42 = 1/4.4 < 1/ 3.4
1/52= 1/5.5 < 1/ 4.5
1/62 = 1/6.6 < 1/ 5.6
..........
1/1002 = 1/100. 100 < 1/ 99.100
Đặt D = 1/ 2.3 + 1/3.4 + 1/4.5 + 1/ 5.6+ ... + 1/ 99.100
suy ra A < D
mà D = 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + ....+ 1/99 - 1/ 100
= 1/2 - 1/100
Mà 1/2 - 1/100 < 1/2
hay D < 1/2 , suy ra A < D < 1/2
suy ra A < 1/2
vậy dãy tính trên < 1/2