ta có: -(-a+b+c)+(b+c-1)= a-b-c+b+c-1=a-1 (1)
(b-c+6)-(7-a+b)+c= b-c+6-7+a-b+c=a-1 (2)
Từ (1),(2) => -(-a+b+c)+(b+c-1)=(b-c+6)-(7-a+b)+c
Vế trái = -(-a+b+c)+(b+c-1)
= a-b-c+b+c-1
= a+(-b+b)+(-c+c)-1
= a+0+0-1
= a-1
Vế phải = (b-c+6)-(7-a+b)+c
= b-c+6-7+a-b+c
= (b-b)+(-c+c)+(6-7)+a
= 0+0-1+a
= a-1
- Vậy -(-a+b+c)+(b+c-1)=(b-c+6)-(7-a+b)+c
a)
Có: -(-a + b + c) + (b + c - 1) = a - b - c + b + c - 1
= a - 1
Lại có: (b - c + 6) - (7 - a + b) + c = b - c + 6 - 7 + a - b + c
= a - 1
Vì a - 1 = a - 1
nên -(-a + b + c) + (b + c - 1) = (b - c + 6) - (7 - a + b) + c (đpcm)
-(-a+b+c)+(b+c-1)=(b-c+6)-(7-a+b)+c
=>a-b-c+b+c-1=b-c+6-7+a-b+c
=>a-1=6-7+a
=>a-1=-1+a
<=>a-1=a-1
=>-(-a+b+c)+(b+c-1)=(b-c=6)-(7-a+b)+c
Nhớ ''tick'' cho mình nha!