\(\begin{array}{l} \text{Xét:}\\ VP=(x+y)^2-4xy\\ =x^2+2xy+y^2-4xy\\ =x^2+(2xy-4xy)+y^2\\ =x^2-2xy+y^2\\ =(x-y)^2=VT\ \text{(đpcm)}\end{array}\)
Ta có: \(\left(x+y\right)^2-4xy\)
\(=x^2+2xy+y^2-4xy\)
\(=x^2-2xy+y^2\)
\(=\left(x-y\right)^2\)(đpcm)
\(\begin{array}{l} \text{Xét:}\\ VP=(x+y)^2-4xy\\ =x^2+2xy+y^2-4xy\\ =x^2+(2xy-4xy)+y^2\\ =x^2-2xy+y^2\\ =(x-y)^2=VT\ \text{(đpcm)}\end{array}\)
Ta có: \(\left(x+y\right)^2-4xy\)
\(=x^2+2xy+y^2-4xy\)
\(=x^2-2xy+y^2\)
\(=\left(x-y\right)^2\)(đpcm)
Chứng minh rằng hàm số \(y=\dfrac{x^2}{x^2+1}\) đồng biến trên khoảng (-1 ; 1) và nghịch biến trên các khoảng (-∞ ; -1) và (1 ; +∞).
Chứng minh rằng hàm số \(y=\sqrt{2x-x^2}\) đồng biến trên khoảng (0 ; 1) và nghịch biến trên các khoảng (1 ; 2).
Giải hệ phương trình sau: (dùng kiến thức hàm đặc trưng)
\(\left\{{}\begin{matrix}x+\sqrt{x\left(x^2-3x+3\right)}=\sqrt[3]{y+2}+\sqrt{y+3}+1\\3\sqrt{x-1}-\sqrt{x^2-6x+6}=\sqrt[3]{y+2}+1\end{matrix}\right.\)
1, Chứng minh bất đẳng thức:
\(a+\sqrt{a^2-2a+5}+\sqrt{a-1}\ge3\forall a\ge1\)
2, Giải phương trình:
\(x\left(x^2-3x+3\right)+\sqrt{x+3}=3\)
Mong mọi người giúp mình với ạ!! Mình cảm ơn nhiều!!
Chứng minh các bất đẳng thức sau :
a) \(\tan x>\sin x;0< x< \dfrac{\pi}{2}\)
b) \(1+\dfrac{1}{2}x-\dfrac{x^2}{8}< \sqrt{1+x}< 1+\dfrac{1}{2}x\) với \(0< x< +\infty\)
Xét tính đồng biến, nghịch biến:
a) \(y=\dfrac{x^2+2}{x+1}\)
b) \(y=\dfrac{2x^2-3}{x-2}\)
c) \(y=\dfrac{x+1}{x^2-4}\)
d) \(y=\dfrac{2x+3}{x^2-1}\)
Cho các hàm số sau: \(y=\dfrac{1}{3}x^3-x^2+3x+4\); \(y=\sqrt{x^2+4}\);\(y=x^3+4x-sinx\);\(y=x^4+x^2+2\). Có bao nhiêu hàm số đồng biến trên những khoảng mà nó xác định
Chứng minh các bất đẳng thức sau:
a) \(tanx > x (0 < x < \dfrac{\pi}{2})\)
b) \(tanx > x + \dfrac{x^3}{3} (0 < x < \dfrac{\pi}{2})\)
Mong mọi người giúp tôi giải hệ phương trình này:
\(\begin{cases}\sqrt{x^2+2y}+2y=\sqrt[3]{8y^3+4}+\left(x^2+2y-1\right)\sqrt{6x+4}\\\sqrt{y^2+1}+\sqrt{x-y}=2xy-x^2+\sqrt{x^2-2xy+y^2+1}+\sqrt{y}\end{cases}\)