\(A=x^2-x+1\)
\(A=\left(x^2-\dfrac{1}{2}.2.x+\dfrac{1}{4}\right)-\dfrac{1}{4}+1\)
\(A=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
\(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\in R\)
\(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\in R\)
Vậy: \(A>0\forall x\in R\) (đpcm)