a) \(\dfrac{a^6+b^6}{2}\ge3a^2b^2-4\)
\(\Leftrightarrow a^6+b^6\ge6a^2b^2-8\)
\(\Leftrightarrow a^6+b^6+8\ge6a^2b^2\)
Áp dụng BĐT Cauchy, ta có:
\(a^6+b^6+8\ge3\sqrt[3]{a^6.b^6.8}=6a^2b^2\)
Vậy ta có đpcm
b) Tương tự
a) \(\dfrac{a^6+b^6}{2}\ge3a^2b^2-4\)
\(\Leftrightarrow a^6+b^6\ge6a^2b^2-8\)
\(\Leftrightarrow a^6+b^6+8\ge6a^2b^2\)
Áp dụng BĐT Cauchy, ta có:
\(a^6+b^6+8\ge3\sqrt[3]{a^6.b^6.8}=6a^2b^2\)
Vậy ta có đpcm
b) Tương tự
Chứng minh các đẳng thức (với a, b không âm và \(a\ne b\))
a) \(\dfrac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\dfrac{2b}{b-a}=\dfrac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)
b) \(\left(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}\right)\left(\dfrac{\sqrt{a}+\sqrt{b}}{a-b}\right)^2=1\)
Chứng minh các đẳng thức sau :
a) \(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{6}\right).\dfrac{1}{\sqrt{6}}=-1,5\)
b) \(\left(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}=-2\)
c) \(\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}-\sqrt{b}}=a-b\) với a, b dương và \(a\ne b\)
d) \(\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)=1-a\) với \(a\ge0\) và \(a\ne1\)
Rut gon phuong trinh \(\dfrac{a-b}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{a^6}+\sqrt{b^6}}{a-b}\)
A \(\dfrac{\sqrt{ab}}{\sqrt{a}-\sqrt{b}}\)
B\(\dfrac{\sqrt{ab}-2b}{\sqrt{a}-\sqrt{b}}\)
C \(\dfrac{2b}{\sqrt{a}-\sqrt{b}}\)
D\(\dfrac{\sqrt{ab}-2a}{\sqrt{a}-\sqrt{b}}\)
Giup minh chon dap an dung
\(\dfrac{a+b}{ab+c^2}+\dfrac{b+c}{bc+a^2}+\dfrac{c+a}{ca+b^2}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Chứng minh bất đẳng thức trên
P=\(\left(\dfrac{2\left(a+b\right)}{\sqrt{a^3}-2\sqrt{2b^3}}-\dfrac{\sqrt{a}}{a+\sqrt{2ab}+2b}\right)\left(\dfrac{\sqrt{a^3}+2\sqrt{2b^3}}{2b+\sqrt{2ab}}-\sqrt{a}\right)\)
a) Tìm điều kiện của a và b để biểu thức P xác định. Rút gọn P
b) Biết \(a=1+\dfrac{\sqrt{3}}{2}\) và \(b=\dfrac{1}{2}-\dfrac{\sqrt{3}}{4}\). Tính giá trị biểu thức P
a)Tính giá trị biểu thức:p= \(\dfrac{\left(5+2\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{\sqrt{3}+\sqrt{2}}\)
b)Chứng minh rằng nếu a,b,c là các số dương thỏa mãn a+c =2b thì ta luôn có
\(\dfrac{1}{\sqrt{a}+\sqrt{b}}+\dfrac{1}{\sqrt{b}+\sqrt{c}}=\dfrac{2}{\sqrt{a}+\sqrt{c}}\)
Cho biểu thức:
\(A=\dfrac{\sqrt{x}-1}{\sqrt{x}-5};B=\dfrac{\sqrt{x}+3}{\sqrt{x}+1}+\dfrac{5}{\sqrt{x}-1}+\dfrac{4}{x-1}\), \(x\ge0,x\ne1,x\ne25.\)
a) Chứng minh rằng \(B=\dfrac{\sqrt{x}+6}{\sqrt{x}-1}\).
b) Tính giá trị của A khi x = 49.
c) Tìm giá trị của x để B > 1.
d) So sánh \(C=\left(A.B+\dfrac{x-5}{\sqrt{x}-5}\right).\dfrac{\sqrt{x}-5}{\sqrt{x}}\) với 3 \(\left(x>0,x\ne1,x\ne25\right)\)
Chứng minh các đẳng thức :
a) \(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\sqrt{6}\)
b) \(\sqrt{\dfrac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\dfrac{4}{\left(2+\sqrt{5}\right)^2}}=8\)
chứng minh
\(\dfrac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\dfrac{2b}{b-a}=\dfrac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)