1: Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a}{a+c}=\dfrac{bk}{bk+dk}=\dfrac{b}{b+d}\)
2: Ta có: \(\dfrac{a}{a+c}=\dfrac{b}{b+d}\)
nên \(\dfrac{a+c}{a}=\dfrac{b+d}{b}\)
3: \(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=k\)
\(\dfrac{a-c}{b-d}=\dfrac{bk-dk}{b-d}=k\)
Do đó: \(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)
4: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)
=>a/c=a+b/c+d