Đề bài sai
Phản ví dụ: \(a=c=0;b=-2\) thì \(a^4+b^3+c^2+1=-7\)
Trong khi \(a\left(ab^2-a+c+1\right)=0\)
\(-7\) ko thể lớn hơn 0
Đề bài sai
Phản ví dụ: \(a=c=0;b=-2\) thì \(a^4+b^3+c^2+1=-7\)
Trong khi \(a\left(ab^2-a+c+1\right)=0\)
\(-7\) ko thể lớn hơn 0
Chứng minh là bình phương của 1 đa thức
cho -1 ≤ a,b,c ≤ 1 va 1 + 2abc ≥ a2 + b2 +c2. cmr: 1 + 2a2b2c2 ≥ a4 + b4 + c4
a4+b3+c2+1>=2a(ab2-a+c+1)
Cho a, b, c là các số thực dương thỏa mãn \(a^2+b^2+c^2=1\). Chứng minh rằng: \(\dfrac{1}{a^2+b^2}+\dfrac{1}{c^2+a^2}+\dfrac{1}{a^2+b^2}\le\dfrac{a^3+b^3+c^3}{2abc}+3\)
Mọi người giúp em với ạ, chiều em phải nộp rồi ạ T.T
Cho a+b+c=0 ; \(\dfrac{1}{a}\)+\(\dfrac{1}{b}\)+\(\dfrac{1}{c}\)=0. Chứng minh rằng: a2+b2+c2=1
Chứng minh các bất đẳng thức:
a) \(\dfrac{a^2+a+1}{a^2-a+1}\) > 0
b) a2 + b2 + c2 + 3 ≥ 2(a + b + c)
Cho 1/a + 1/b + 1/c = 1/(a+b+c). chứng minh 1/a^n + 1/b^n + 1/c^n = 1(a^n+b^n+c^n). Mọi người giúp mình với ạ
Chứng minh x^3+x^2+x-3 chỉ có duy nhất 1 nghiệm !!! Chứng minh giúp em với ạ !!!
Mong các bạn ,thầy cô giải thích hộ mình câu (#) và cho VD:Để chứng minh biểu thức A(n) chia hết cho p,ta xét số dư trong phép chia n cho p.Chia n cho p ta được các dư:0,1,2,...,p-1. (#) Đặc biệt nếu p lẻ ta có thể viết: n=kp+r (với r =0,\(\pm1,...,\dfrac{\pm p+1}{2}\) )