Ta có: \(A=2^{2^{2n}}+5\)
\(=2^{4n}+5\)
\(=2^{\left(3+1\right)\cdot n}+5\)
\(=2^{B\cdot\left(3+1\right)}+5\)
\(=2^{3k+1}+5\)
\(=8^k\cdot2-2+7\)
\(=2\cdot\left(8^k-1^k\right)+7\)
mà \(2\cdot\left(8^k-1\right)⋮2\left(8-1\right)=2\cdot7\)
và \(7⋮7\)
nên \(2\cdot\left(8^k-1^k\right)+7⋮7\)
hay \(A⋮7\)