a, \(x^2-6x+10=x^2-2.x.3+3^2+1=\left(x-3\right)^2+1>0\)
=> đpcm
b, Đề sai
c, \(x^2+x+5=x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{19}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}>0\)
=> đpcm
a, \(x^2-6x+10=x^2-2.x.3+3^2+1=\left(x-3\right)^2+1>0\)
=> đpcm
b, Đề sai
c, \(x^2+x+5=x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{19}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}>0\)
=> đpcm
Chứng minh:
A (x)= x2-4x+5>0
B(x)= x2+x+1>0
C(x)= 8x - x2-17<0
Chứng minh rằng
a) – x2 + 4x – 5 < 0 với mọi x
b) x4 + 3x2 + 3 > 0 với mọi x
c) (x2 + 2x + 3)(x2 + 2x + 4) + 3 > 0 với mọi x
Bài 2: CMR c¸c biÓu thøc sau lu«n d¬ng víi mäi gi¸ trÞ cña biÕn:
d) x2- 2xy+2y2+2y+5
x2 + 4y2 – 2xy – 6y- 10( x- y) + 32
Bài 3: CMR c¸c biÓu thøc sau lu«n ©m víi mäi gi¸ trÞ cña biÕn:
d) -x2+ 4xy - 5y2- 8y -18
–x2 + 2xy- 4y2 + 2x + 10y - 8
Bài 4: a) Cho ba số x, y, z thỏa mãn: x + y + z = 0 và x2 + y2 + z2 = a2. Tính x4 + y4 + z4
b)Cho x, y thỏa mãn : x + y = a ; x2 + y2 = b và x3 + y3 = c. Chứng minh rằng : a3 + 2c = 3ab
c) Cho a + b + c + d = 0.Chứng minh rằng a3 + b3 + c3 + d3 = 3( c +d)( ab – cd)
chứng minh rằng
a)A=x2+4xy+5y2+2x-10y+14>0
b)B=5x2+10y2-(xy-4x-2y+3)>0
c)C=(x2+2x+3)(x2+2x+4)+3>0
a,A=x2+x-2 b,B=4x-x2+5 c,C=9x2-6x+3 d,D=3x+x2-7 e,E=x2+y2-3x+2y+3 f,F=x2+y2-x+4y+5
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào x :
a) A=(x+6)2+2(x-5)2-(x+2)2-2(x-3)2
b) B=(x-2)(x2+2x+4)-(x+2)(x2-2x+4)
c) C=x4+2x2-(x2-2x+3)(x2+2x+3)
Bài 1: Chứng minh rằng các biểu thức sau có giá trị dương với mọi giá trị của x:
1. (x-3)(x-5)+44 > 0
2. x2+y2-8x+4y+31 > 0
3. 16x2+16x+25 > 0
4. 30-6x+x2 > 0
5. x2+\(\dfrac{2}{3}\)x+\(\dfrac{1}{2}\) > 0
6. x2+\(\dfrac{2}{5}\)x+\(\dfrac{1}{5}\) > 0
7. 64x2+8x+1 > 0
8. \(\dfrac{1}{9}\)x2+2x+10 > 0
9. \(\dfrac{1}{16}\)x2-x+3 > 0
Gíup mình với nha!!!!
B1:Chứng minh rằng:
(a^2+b^2)(c^2+d^2)=(ac+bd)^2+(ad-bc)^2
B2:Tìm giá trị nhỏ nhất của đa thức:
a)P=x^2-2x+5
b)Q=2x^2-6x
c)M=x^2+y^2-x+6y+10
B3:Chứng tỏ rằng:
a)x^2-6x+10>0 với mọi x
b)4x-x^2-5<0 với mọi x
(x+2)(x2-2x+4)-(x3+2x2)=0
(x-13)+(2-x)(4+2x+x2)+3x(x+2)=17
giúp mik nha :>