Lời giải:
Xét hiệu: \(x-\sqrt{x}=\sqrt{x}(\sqrt{x}-1)=\frac{\sqrt{x}(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}+1}=\frac{\sqrt{x}(x-1)}{\sqrt{x}+1}\)
a) Với $x>1$ thì: \(\sqrt{x}>0; x-1>0; \sqrt{x}+1>0\Rightarrow x-\sqrt{x}=\frac{\sqrt{x}(x-1)}{\sqrt{x}+1}>0\)
\(\Rightarrow x> \sqrt{x}\)
b) Với $0< x< 1$ thì:
\(\sqrt{x}>0; x-1< 0; \sqrt{x}+1>0\Rightarrow x-\sqrt{x}=\frac{\sqrt{x}(x-1)}{\sqrt{x}+1}< 0\)
\(\Rightarrow x< \sqrt{x}\)