Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Khoa Nguyên

Cho biểu thức:\(P=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\)

a, Rút gọn P

b, Tính P khi \(x=33-8\sqrt{2}\)

c, Chứng minh rằng P < \(\frac{1}{3}\)

Nguyễn Việt Lâm
14 tháng 10 2019 lúc 11:08

ĐKXĐ: ....

\(P=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\frac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)

\(x=33-8\sqrt{2}=\left(4\sqrt{2}-1\right)^2\Rightarrow\sqrt{x}=4\sqrt{2}-1\)

\(\Rightarrow P=\frac{4\sqrt{2}-1}{33-8\sqrt{2}+4\sqrt{2}-1+1}=\frac{4\sqrt{2}-1}{33-4\sqrt{2}}\)

\(P-\frac{1}{3}=\frac{\sqrt{x}}{x+\sqrt{x}+1}-\frac{1}{3}=\frac{3\sqrt{x}-x-\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}=\frac{-\left(\sqrt{x}-1\right)^2}{3\left(x+\sqrt{x}+1\right)}< 0\) \(\forall x\ne1\)

\(\Rightarrow P< \frac{1}{3}\)


Các câu hỏi tương tự
Thu Hien Tran
Xem chi tiết
Nguyễn Mai
Xem chi tiết
Linh Nguyen
Xem chi tiết
Alice dono
Xem chi tiết
Ngô Thanh Huyền
Xem chi tiết
nguyen thi thu
Xem chi tiết
Phan uyển nhi
Xem chi tiết
Hoài Dung
Xem chi tiết
Huyền Nguyễn
Xem chi tiết