Ôn tập cuối năm phần số học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hà Trần

Chứng minh

a, 1/4+1/16+1/36+1/64+1/100+1/144+1/196<1/2

b, 11/15<1/21+1/22+1/23+...+1/59+1/60<3/2

Nguyễn Huyền Trâm
25 tháng 5 2020 lúc 13:15

a,\( \dfrac{1}{4}+ \dfrac{1}{16}+ \dfrac{1}{36}+ \dfrac{1}{64}+ \dfrac{1}{100}+ \dfrac{1}{144}+ \dfrac{1}{196}\)

= \( \dfrac{1}{4}+ \dfrac{1}{16}+ \dfrac{1}{36}+...+ \dfrac{1}{196} < \dfrac{1}{2^2-1}+ \dfrac{1}{4^2-1}+ \dfrac{1}{6^2-1}+...+ \dfrac{1}{14^2-1}\)

= \( \dfrac{1}{1.3}+ \dfrac{1}{3.5}+ \dfrac{1}{5.7}+...+ \dfrac{1}{13.15}\)

= \( \dfrac{1}{2}(1- \dfrac{1}{3}+ \dfrac{1}{3}- \dfrac{1}{5}+ \dfrac{1}{5}- \dfrac{1}{7}+ \dfrac{1}{7}-...- \dfrac{1}{13}+ \dfrac{1}{13}- \dfrac{1}{15})\)

= \( \dfrac{1}{2}(1- \dfrac{1}{15})< \dfrac{1}{2}\)

Vậy \( \dfrac{1}{4}+ \dfrac{1}{16}+ \dfrac{1}{36}+ \dfrac{1}{64}+ \dfrac{1}{100}+ \dfrac{1}{144}+ \dfrac{1}{196}\) \(<\dfrac{1}{2} \)

Nguyễn Huyền Trâm
25 tháng 5 2020 lúc 13:25

b,A= \(\dfrac{11}{15}<\dfrac{1}{21}+\dfrac{1}{22}+\dfrac{1}{23}+...+\dfrac{1}{59}+\dfrac{1}{60}<\dfrac{3}{2}\)

\(=(\dfrac{1}{21}+\dfrac{1}{22}+\dfrac{1}{23}+....+\dfrac{1}{40})+(\dfrac{1}{41}+...+1...\)
\(=(\dfrac{20}{20.21}+\dfrac{21}{21.22}+...+\dfrac{39}{39.40})+(40/...\)
\(20(\dfrac{1}{20.21}+\dfrac{1}{21.22}+...\dfrac{1}{39.40})+40(\dfrac{1}{40}...\)
\(20(\dfrac{1}{20}-\dfrac{1}{40})+40(\dfrac{1}{40}-\dfrac{1}{60})>\dfrac{11}{15}\)
Lại có \(A<40(\dfrac{1}{20.21}+...\dfrac{1}{39.40})+60(\dfrac{1}{40.41}+...+...\)
\(=40(\dfrac{1}{20}-\dfrac{1}{40})+60(\dfrac{1}{40}-\dfrac{1}{60})<\dfrac{3}{2}\)

=> \(\dfrac{11}{15}<\dfrac{1}{21}+\dfrac{1}{22}+\dfrac{1}{23}+...+\dfrac{1}{59}+\dfrac{1}{60}<\dfrac{3}{2}\)


Các câu hỏi tương tự
Nguyễn Hoàng
Xem chi tiết
Hann LinGNguyen
Xem chi tiết
Nguyễn Tất Lãm
Xem chi tiết
Hoàng Nghĩa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Đỗ Phi Phi
Xem chi tiết
Hoàng Thúy An
Xem chi tiết
Lê Thị Thu Huệ
Xem chi tiết
Nhân Mã
Xem chi tiết