với \(k\in N^{\circledast}\) nha
bài làm :
với \(k=0\) thì ta thấy bài toán thỏa mãn
giả sử \(k=n\) thì ta có : \(2^{2k+1}+1=2^{2n+1}+1⋮3\)
khi đó nếu ta có \(k=n+1\)
\(\Rightarrow2^{2k+1}+1=2^{2n+3}+1=4.2^{2n+1}+1=2^{2n+1}+1+3.2^{2n+1}⋮3\)
\(\Rightarrow\) (đpcm)
Ta có \(2\equiv-1\left(mod3\right)\)
mà 2k+1 là số lẻ \(\Rightarrow2^{2k+1}\equiv-1\left(mod3\right)\Rightarrow2^{2k+1}+1\equiv0\left(mod3\right)\Rightarrow2^{2k+1}+1⋮3\left(ĐPCM\right)\)