Ta có : \(x^2=8+2\sqrt{4^2-\left(10+2\sqrt{5}\right)}=8+2\sqrt{6-2\sqrt{5}}=8+2\sqrt{\left(\sqrt{5}-1\right)^2}=8+2\left(\sqrt{5}-1\right)=6+2\sqrt{5}=\left(\sqrt{5}+1\right)^2\)
==> x = \(\sqrt{5}+1\) ==> 2x = \(2\sqrt{5}+2\)
Vậy f(x) = \(\left(6+2\sqrt{5}-2\sqrt{5}-2-5\right)^{2015}=-1^{2015}=-1\)