Cho hai đường tròn (O) và (O') ở ngoài nhau. Đường nối tâm O' cắt các đường tròn (O) và (O') lần lượt tại các điểm A, B, C, D theo thứ tự trên đường thẳng. Kẻ tiếp tuyến chung ngoài EF, E ϵ (O), F ϵ (O'). M là giao điểm của AE và DF, N là giao điểm của EB và EC. Chứng minh:
a) MENF là hình chữ nhật
b) MN vuông góc AD
c) ME.MA=MF.MD
Cho đường tròn O và đường thẳng d đi qua đường tròn nhưng không qua O
Lấy d cắt O tại hai điểm A,B . chọn điểm M thuộc O nằm ngoài đoạn AB
kẻ MC,MD là tiếp tuyến của (O), ( C,D thuộc (O) )
Kẻ hai tiếp tuyến của (O) cắt (O) tại A,B
giao điểm hai tiếp tuyến đó là I
CMR I,C,D thẳng hàng
Cho (O;R) và điểm A nằm ngoài đường tròn (O). Qua A vẽ tiếp tuyến AB tiếp xúc với đường tròn (O) tại B. Vẽ một đường thẳng qua A cắt đường tròn tại hai điểm M và N ( M nằm giữa A và N). Qua M kẻ đường thẳng song song với AB cắt BN tại E. Gọi I là trung điểm của ME. Vẽ dây BQ của đường tròn (O) sao cho BQ đi qua điểm I
a) Chứng minh hai tam giác BMI và tam giác BQM đồng dạng
b)Chứng minh tứ giác QIEN nội tiếp
c) Chứng minh BM.QN=BN.MQ
Cho đường tròn (O;R) và các tiếp tuyến AB, AC cắt nhau tại A nằm ngoài đường tròn (B, C là các tiếp điểm). Gọi H là giao điểm của BC và OA.
a) CMR: OA vuông góc với BC và \(OH.OA=R^2\)
b) Kẻ đường kính BD của đường tròn (O) và kẻ đường thẳng CK vuông góc với BD (K thuộc D). CMR: AO song song với CD và AC.CD=CK.AO
c) Gọi I là giao điểm của AD và CK. CMR: Tam giác BIK và tam giác CHK có diện tích bằng nhau
Cho hai đường tròn (O;4cm), (I;2cm) cắt nhau tại hai điểm phân biệt A, B sao cho OAI ≠ 90o. Tiếp tuyến của đường tròn (O) tại A cắt đường tròn (I) tại C khác A.Tiếp tuyến của đường tròn (I) tại A cắt đường tròn (O) tại D khác A. Gọi E là giao điểm của AB và CD. Gọi P, Q lần lượt là trung điểm của AD, CD. Chứng minh :
a) Hai tam giác APQ, ABC đồng dạng
b) ED = 4EC
giúp em bài này với ạ.
2) cho đường tròn (o)đường kính AB.Kẻ tiếp tuyến tại B và đường tròn (o) trên tiếp tuyến lấy điểm P.Qua a kẻ đường thẳng song song OP cắt (o) tại Q.CMR: PQ là tiếp tuyến của đường tròn (o)
Từ điểm A nằm ngoài đường tròn (O;R) với OA > 2R, kẻ các tiếp tuyến AB, AC của đường tròn (O) (B, C là các tiếp điểm). Vẽ đường kính BD của đường tròn (O); AD cắt đường tròn (O) tại E (E khác D).
a) Chứng minh: OA BC tại H và 4 điểm A, B, O, C cùng thuộc đường tròn
b) Chứng minh: CD // OA và AH.AO= AE.AD
c) Gọi I là trung điểm của HA. Chứng minh ABI = BDH
Từ điểm M nằm ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB (A, B là các tiếp điểm). Kẻ đường kính AC, tiếp tuyến tại C của đường tròn cắt AB tại D. Gọi I là trung điểm của MO.
a) Chứng minh 4 điểm M, A, O, B cùng thuộc một đường tròn.
b) Chứng minh AB.AD = AC2 .
c) Tia AI cắt đường thẳng BC tại K. Chứng minh tứ giác MOCK là hình bình hành.
Cho đường tròn tâm O và điểm M nằm ngoài đường tròn đó. Qua M kẻ các tiếp tuyến MA, MB với đường tròn (A, B là tiếp điểm). Đường thẳng (d) thay đổi đi qua M, không đi qua O và luôn cắt đường tròn tại hai điểm phân biệt C và D (C nằm giữa M và D).
a) Chứng minh AMBO là tứ giác nội tiếp.
b) Chứng minh MC.MD=MA\(^2\)