choa,b,c > 0. Cmr: \(\sqrt{\frac{2}{a}}+\sqrt{\frac{2}{b}}+\sqrt{\frac{2}{c}}\le\sqrt{\frac{a+b}{ab}}+\sqrt{\frac{b+c}{bc}}+\sqrt{\frac{c+a}{ca}}\)
Cho a, b, c > 0 thỏa mãn abc = 1. Tìm GTLN
P = \(\frac{1}{\sqrt{a^5+b^2+ab+6}}+\frac{1}{\sqrt{b^5+c^2+bc+6}}\frac{1}{\sqrt{c^5+a^2+ac+6}}\)
Cho a,b,c >0 và a+b+c=1 chứng minh rằng
\(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge3\sqrt{3}\left(ab+bc+ca\right)\)
Cho $a,b,c>0$ và $a+b+c\geq9$
Tìm Min
$P=\frac{1}{6\sqrt{ab}+8\sqrt{ca}+7c}+2\sqrt{a+b+c}$
cho ba số thực a,b,c thay đổi .tìm MAX
\(3\sqrt[3]{\dfrac{c^2-3a^2}{6}}-2\sqrt{\dfrac{a^2+b^2+c^2-ab-bc-ca}{3}}\)
1) tìm min \(P=\dfrac{2009x^2-6039x+6\sqrt{x^3-2x^2+2x-4}-8024}{x^2-3x-4}\)
2) cho các số thực dương a,b,c thỏa mãn a2+b2+c2=1
cm \(\sqrt{\dfrac{ab+2c^2}{1+ab-c^2}}+\sqrt{\dfrac{bc+2a^2}{1+bc-a^2}}+\sqrt{\dfrac{ca+2b^2}{1+ca-b^2}}\ge2+ab+bc+ca\)
Cho 3 số thực dương a,b,c thỏa mãn a+b+c=3.
CMR \(\frac{b+1}{8-\sqrt{a}}+\frac{c+1}{8-\sqrt{b}}+\frac{a+1}{8-\sqrt{c}}\le\frac{6}{7}\)
Cho \(a,b,c>0\). CMR \(\sqrt{\dfrac{a}{b+c}}+\sqrt[3]{\dfrac{b}{c+a}}+\sqrt[4]{\dfrac{c}{a+b}}\ge\dfrac{7}{12}\cdot2^{\dfrac{6}{7}}\cdot3^{\dfrac{4}{7}}\)
1/ cho a,b,c >0
a+b+c=3:
chứng minh : \(\frac{a^2}{b+3c}+\frac{b^2}{c+3a}+\frac{c^2}{a+3b}\) ≥ \(\frac{3}{4}\)
2/a,b,c>0
a+b+c=6
chứng minh : S= \(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\) ≤ 6