cho a,b,c > 0 thỏa mãn abc =1. Cmr: \(\frac{1}{\sqrt{ab+a+2}}+\frac{1}{\sqrt{bc+b+2}}+\frac{1}{\sqrt{ca+c+2}}\le\frac{3}{2}\)
C/m BĐT : \(\frac{5b^3-a^3}{ab+3b^2}+\frac{5c^3-b^3}{bc+3c^2}+\frac{5a^3-c^3}{ca+3a^2}\le a+b+c\)
\(\frac{c+a}{\sqrt{a^2+c^2}}\ge\frac{c+b}{\sqrt{c^2+b^2}};a>b>0,c>\sqrt{ab}\)
Cho a;b;c>0.CMR:
\(\sqrt[3]{\frac{a^2+bc}{abc\left(b^2+c^2\right)}}+\sqrt[3]{\frac{b^2+ca}{abc\left(c^2+a^2\right)}}+\sqrt[3]{\frac{c^2+ab}{abc\left(a^2+b^2\right)}}\ge\frac{9}{a+b+c}\)
Cho a,b,c>0 thoả mãn a2+b2+c2=1
CMR: \(\frac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}+\frac{b^2+bc+1}{\sqrt{b^2+3bc+a^2}}+\frac{c^2+ca+1}{\sqrt{c^2+3ac+b^2}}\ge\sqrt{5}\left(a+b+c\right)\)
1.Cho a,b,c dương, a+b+c≤1.CMR: \(\frac{a^2+1}{a}+\frac{b^2+1}{b}+\frac{c^2+1}{c}\ge10\)
2.Cho a,b, c >0. CMR: \(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{82};x+y+z\le1\)
cho a , b , c >0. Chứng minh các bất đẳng thức :
1, ab + bc + ca \(\ge\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
2, \(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\)
3, \(ab+\frac{a}{b}+\frac{b}{a}\ge a+b+1\)
4, \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\)
5, \(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
1. Cho a, b, c là các số thực dương t/m a + b+ c=abc. CMR :
\(\frac{1}{\sqrt{1+a^2}}+\frac{1}{\sqrt{1+b^2}}+\frac{1}{\sqrt{1+c^2}}\le\frac{3}{2}\)
Cho a;b;c>0:abc=1.CMR:
\(\sqrt[3]{\frac{b+c}{2a}}+\sqrt[3]{\frac{c+a}{2b}}+\sqrt[3]{\frac{a+b}{2c}}\le\frac{5\left(a+b+c\right)+9}{8}\)
\(\sqrt{\frac{a}{2a+b+c}}+\sqrt{\frac{b}{a+2b+c}}+\sqrt{\frac{c}{a+b+2c}}\le\frac{3}{2}\)