áp dụng bđt cauchy-schwarz dạng engel ta có :
\(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{9}{x+y+z+3}=\dfrac{9}{4}\)
dâu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)
áp dụng bđt cauchy-schwarz dạng engel ta có :
\(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{9}{x+y+z+3}=\dfrac{9}{4}\)
dâu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)
cho x,y,z > 0 : x+y+z=1
TÌm GTNN của biểu thức:
\(B=\dfrac{1}{x}+\dfrac{4}{y}+\dfrac{9}{z}\)
cho x, y, z là các số thực dương thỏa mãn x+y+z\(\le\) 1
tìm gtnn của biểu thức: Q=\(2\left(x+y+z\right)+3\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
Tìm GTNN của biểu thức:
\(A=\dfrac{x^2}{x+y}+\dfrac{y^2}{y+z}+\dfrac{z^2}{x+z}\)
Biết\(\left\{{}\begin{matrix}x.y.z>0\\\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=1\end{matrix}\right.\)
Cho x,y, z la cac so duong thoa man dieu kien x+y+z=a
tim GTNN : Q=\(\left(1+\dfrac{a}{x}\right)\left(1+\dfrac{a}{y}\right)\left(1+\dfrac{a}{z}\right)\)
cho x,y,z>0 và x+y+z=\(\sqrt{3}\)
tìm GTNN \(A=\dfrac{1}{\sqrt{x\left(y+2z\right)}}+\dfrac{1}{\sqrt{y\left(z+2x\right)}}+\dfrac{1}{\sqrt{z\left(x+2y\right)}}\)
Cho x,y,z>1 và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=2\)
Chứng minh \(\sqrt{x+y+z}\ge\sqrt{x-1}+\sqrt{y-1}+\sqrt{z-1}\)
Cho x, y, z là các số dương. Chứng minh :
\(\left(xyz+1\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{x}{z}+\dfrac{z}{y}+\dfrac{y}{x}\ge x+y+z+6\)
cho x,y,z là các số dương thoả mãn \(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\)=6
Chứng minh \(\dfrac{1}{3x+3y+2z}+\dfrac{1}{3x+2y+3z}+\dfrac{1}{2x+3y+3z}\)≤\(\dfrac{3}{2}\)
Cho 3 số dương x,y,z. CMR:\(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}>=3\left(\dfrac{1}{\sqrt{x}+2\sqrt{y}}+\dfrac{1}{\sqrt{y}+2\sqrt{z}}+\dfrac{1}{\sqrt{z}+2\sqrt{x}}\right)\)