Đề bài sai
Phản ví dụ: với \(x=y=z=2\Rightarrow x^2+y^2+z^2=12>9\) (thỏa mãn điều kiện)
Nhưng \(\frac{x}{yz}+\frac{y}{zx}+\frac{z}{xy}=\frac{3}{2}< \sqrt{3}\)
Đề bài sai
Phản ví dụ: với \(x=y=z=2\Rightarrow x^2+y^2+z^2=12>9\) (thỏa mãn điều kiện)
Nhưng \(\frac{x}{yz}+\frac{y}{zx}+\frac{z}{xy}=\frac{3}{2}< \sqrt{3}\)
Cho x,y,z>0 thỏa mãn xy+yz+zx=1. Chứng minh \(\frac{x}{x^2-yz+3}+\frac{y}{y^2-zx+3}+\frac{z}{z^2-xy+3}\ge\frac{1}{x+y+z}\)
cho các số thực dương x,y,z thỏa mãn xyz=1 chứng minh rằng \(\frac{x}{\sqrt{x+\sqrt{yz}}}+\frac{y}{\sqrt{y+\sqrt{zx}}}+\frac{z}{\sqrt{z+\sqrt{xy}}}\ge\frac{3}{2}\)
Cho x,y,z là các số thực dương thỏa mãn xy+yz+zx=1
Chứng minh rằng \(\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}\ge\frac{2}{3}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^3\)
Cho các số dương x,y,z thỏa mãn: xy + yz + zx = 3xyz. Chứng minh rằng
\(\frac{x^3}{x^2+z}+\frac{y^3}{y^2+x}+\frac{z^3}{z^2+y}\ge\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Cho các số dương x,y,zz thỏa mãn điều kiện xy+yz+xz=670. Chứng minh rằng
\(\frac{x}{x^2-yz+2010}+\frac{y}{y^2-zx+2010}+\frac{z}{z^2-xy+2010}\ge\frac{1}{x+y+z}\)
Cho x, y, z > 0 thoả mãn: \(xy+yz+zx=3xyz\). Chứng minh rằng: \(\frac{x^3}{z+x^2}+\frac{y^3}{x+y^2}+\frac{z^3}{y+z^2}\ge\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Cho x,y,z>0 và xyz=1
Chứng minh \(\frac{\sqrt{1+x^2+y^2}}{xy}+\frac{\sqrt{1+y^2+z^2}}{yz}+\frac{\sqrt{1+z^2+x^2}}{zx}\) \(\ge3\sqrt{3}\)
cho các số thực dương x,y,z thỏa mãn \(\sqrt{x}+\sqrt{y}+\sqrt{z}=1\) chứng minh \(\sqrt{\frac{xy}{x+y+2z}}+\sqrt{\frac{yz}{y+z+2x}}+\sqrt{\frac{zx}{z+x+2y}}\le\frac{1}{2}\)
Cho x, y, z là các số thực dương thỏa mãn \(xy+yz+xz=1\) . Chứng minh:
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}\ge\frac{2}{3}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^3\)