Khá đơn giản!
Ta có: \(x+y+z=0\)
=> \(\left(x+y+z\right)^2=0\)
<=> \(x^2+y^2+z^2+2xy+2yz+2xz=0\) (1)
Thay (1) vào A ta được:
A = \(\dfrac{x^2+y^2+z^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
= \(\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)-\left(x^2+y^2+z^2+2xy+2yz+2xz\right)}\)
= \(\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1}{3}\)