cho x,y,z là các số thực dương thỏa mãn x+y+z=3 . Tìm giá trị lớn nhất của biểu thức :\(A=\dfrac{2x^2+3xy-y^2}{x+y}+\dfrac{2y^2+3yz-z^2}{y+z}+\dfrac{2z^2+3zx-x^2}{z+x}\)
Cho 3 sô thực dương x,y,z thoả mãn:1/x^2 +1/y^2 +1/z^2 =3
Tìm minA=y^2z^2/xy^2+z^2 +z^2x^2/yz^2+x^2 +x^2y^2/zx^2+y^2
Nhờ mn giải dùm ạ
Cho ba số thực dương x;y;z thoả mãn
\(5\left(x+y+z\right)^2\ge14\left(x^2+y^2+z^2\right)\)
Tìm giá trị lớn nhất nhỏ nhất của biểu thức:P=\(\frac{2x+z}{x+2z}\)
Cho x,y,z là các số thực dương lớn hơn 3. Tìm gtnn của biểu thức P= 2x/ căn ( y+z-6) + y/ căn ( z+ 2x -6) + z/ căn ( 2x+y-6)
Tìm giá trị của các số nguyên dương x, y và z sao cho \(\left\{{}\begin{matrix}\frac{2x^2}{1+x^2}=y\\\frac{2y^2}{1+y^2}=z\\\frac{2z^2}{1+z^2}=x\end{matrix}\right.\).
1, Cho hai số dương x,y thỏa mãn x+y=1. Tính giá trị nhỏ nhất của biểu thức : \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
2, Cho x,y,z là các số dương thỏa mãn \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}=6\) . Cmr : \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\)
Cho x,y,z là các số thực dương thỏa mãn :\(5\left(x^2+y^2+z^2\right)-9x\left(y+z\right)-18yz=0\)
Tìm Giá trị lớn nhất của biểu thức \(Q=\frac{2x-y-z}{y+z}\)
Cho 3 số thực dương x,y,z thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=4\).Tìm GTLN của biểu thức
\(P=\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\)
1. cho \(\overline{abc}\) là số có 3 chữ số thỏa \(\overline{abc}⋮n;\overline{bca}⋮n;\overline{cab}⋮n\). Cmr: \(a^3+b^3+c^3-3abc⋮n\)
2. Tìm \(a,b,c\in N\) thỏa mãn \(\left(a+1\right)\left(b+2\right)\left(c+3\right)=4abc\)
3. Tìm \(x,y,z\in N\) thỏa mãn : a) \(x^2+y^3=z^4\) b) \(2^x\cdot3^y-1=z^2\)