Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vân Trần Thị

Tìm giá trị của các số nguyên dương x, y và z sao cho \(\left\{{}\begin{matrix}\frac{2x^2}{1+x^2}=y\\\frac{2y^2}{1+y^2}=z\\\frac{2z^2}{1+z^2}=x\end{matrix}\right.\).

Nguyễn Việt Lâm
11 tháng 6 2019 lúc 22:25

Ta có \(1+x^2\ge2x\Rightarrow y=\frac{2x^2}{1+x^2}\le\frac{2x^2}{2x}=x\Rightarrow y\le x\)

Tương tự: \(\frac{2y^2}{1+y^2}=z\Rightarrow z\le y\); \(\frac{2z^2}{1+z^2}=x\Rightarrow x\le z\)

\(\Rightarrow\left\{{}\begin{matrix}y\le x\\x\le z\\z\le y\end{matrix}\right.\) \(\Rightarrow x=y=z\)

Thay vào pt đầu: \(\frac{2x^2}{1+x^2}=x\Leftrightarrow\left[{}\begin{matrix}x=0\\\frac{2x}{1+x^2}=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=1\end{matrix}\right.\)

Vậy \(x=y=z=1\)


Các câu hỏi tương tự
bach nhac lam
Xem chi tiết
Thảo Phương
Xem chi tiết
bach nhac lam
Xem chi tiết
bach nhac lam
Xem chi tiết
Kiều Ngọc Tú Anh
Xem chi tiết
bach nhac lam
Xem chi tiết
Kiều Ngọc Tú Anh
Xem chi tiết
Kakarot Songoku
Xem chi tiết
bach nhac lam
Xem chi tiết