Cho x,y,z là các số thực dương thoản mãn x+y+z=3xyz
Tìm giá trị nhỏ nhất của \(P=\dfrac{yz}{x^3\left(z+2y\right)}+\dfrac{xz}{y^3\left(x+2z\right)}+\dfrac{xy}{z^3\left(y+2x\right)}\)
Cho x,y,z là 3 số thực dương có tổng bằng 10
Tìm giá trị nhỏ nhất của biểu thức P=\(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\)
Cho x,y,z là 3 số thực dương thỏa mãn x(x-z) + y(y-z) = 0
Tìm giá trị nhỏ nhất của biểu thức P = \(\frac{x^3}{x^2+z^2}+\frac{y^3}{y^2+z^2}+\frac{x^2+y^2+4}{x+y}\)
Cho x và y là các số dương thỏa mãn: x+y=1. Tìm giá trị nhỏ nhất của : \(B=\dfrac{4}{x}+\dfrac{9}{y}\)
Cho x,y,z là các số thực dương. Tìm giá trị lớn nhất của:
\(Q=\frac{xy}{x^2+xy+yz}+\frac{yz}{y^2+yz+zx}+\frac{zx}{z^2+zx+xy}\)
cho 3 số dương x,y,z thảo mãn x+y+z = 2
Tìm giá trị nhỏ nhất của biểu thức P= \(\frac{y+z}{xyz}\)
Bài 1:
a) Cho x>y>0 và \(\frac{x^2+y^2}{xy}\)= \(\frac{10}{3}\). Tính giá trị của biểu thức M=\(\frac{x-y}{x+y}\)
b) Tìm giá trị nhỏ nhất của A= \(\frac{5x^2-x+1}{x^2}\), x≠0
Bài 2: Chứng minh rằng:
\(\frac{x-y}{1+xy}\)+\(\frac{y-z}{1+yz}+\frac{z-x}{1+zx}=\frac{x-y}{1+xy}\cdot\frac{y-z}{1+yz}\cdot\frac{z-x}{1+zx}\)
Bài 3: Tìm giá trị nhỏ nhất của biểu thức
a) P= x2+3x+3
b) Q= x2+2y2+2xy-2y
Cho x,y,z đôi một khác nhau và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\). Tính giá trị của biểu thức: \(A=\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}\)